Задачи скорость время расстояние 4 класс: Подборка задач на путь, скорость и расстояние для 4 класса. | Тренажёр по математике (4 класс) по теме:
Подборка задач на путь, скорость и расстояние для 4 класса. | Тренажёр по математике (4 класс) по теме:
Задачи на путь, скорость и расстояние для 4 класса по программе «Школа России».
№1
Караван верблюдов шёл в первый день 8 ч со скоростью 9 км/ч, во второй день – 6 ч со скоростью 8 км/ч, а в третий день – 9 ч со скоростью 7 км/ч. Какое расстояние прошёл караван за 3 дня?
№2
Вертолёт пролетает 840 км за 3 ч, а автомобиль проходит это же расстояние за 7 ч. У кого из них скорость больше и на сколько?
№3
Поезд проходит 320 км за 5 ч. Какое расстояние он пройдёт за 8 ч, двигаясь с этой же скоростью?
№4
Туристы решили пройти за день 30 км. Они уже прошли 3 ч со скоростью 6 км/ч. Какое расстояние им осталось пройти?
За сколько времени они пройдут это расстояние, двигаясь с прежней скоростью?
№5
Ира прошла 15 км за 3 ч, а Петя – 16 км за 4ч. У кого из ребят скорость больше и на сколько?
№6
Автомобиль за 6 ч проехал 480 км. Какое расстояние мог бы проехать автомобиль за это же время, если бы увеличил скорость на 12 км/ч?
№7
Первый лыжник за 3 ч пробежал 51 км, а второй лыжник пробежал за это же время на 6 км больше. На сколько километров в час скорость второго лыжника больше скорости первого?
№8
Расстояние от посёлка Солнечное до Тучково 18 км, а от Тучково до Маросейкино – в 4 раз больше. За сколько времени пройдёт автобус расстояние от Солнечного до Маросейкино, если скорость его движения 45 км/ч?
№9
Стоянка геологов находится на расстоянии 250 км от города. Чтобы добраться до стоянки, геологи сначала ехали из города 3 ч на машине со скоростью 72 км/ч, затем 2 ч ехали на лошадях со скоростью 9 км/ч, а после этого 4 ч шли пешком. С какой скоростью они шли пешком?
№10
Орёл за 9 с пролетел 270 м, а сокол за это время пролетел 189 м. На сколько метров в секунду скорость сокола меньше скорости орла?
№11
Катер идёт от одной пристани к другой со скоростью 30 км/ч, а возвращается обратно со скоростью на 10 км/ч большей. За сколько времени катер пройдёт весь путь туда и обратно, если расстояние между пристанями 240 км/ч.
№12
Волк гонится за Зайцем. Сначала Заяц бежал 2 ч со скоростью 24 км/ч, затем он 3ч ехал на велосипеде, а после этого 5 ч ехал на поезде со скоростью 48 км/ч. Всего Заяц пробежал и проехал 357 км. С какой скоростью он ехал на велосипеде?
Используемая литература
Л.Г. Петерсон. «Математика 3 класс».
Урок 39. задачи на встречное движение – Математика – 4 класс
Математика, 4 класс
Урок №39. Задачи на встречное движение
Перечень вопросов, рассматриваемых в теме:
– какие бывают направления движения?
– что такое скорость сближения?
– как узнать скорость сближения?
Глоссарий по теме:
Скорость сближения – расстояние, на которое сближаются движущиеся предметы в единицу времени.
Встречное движение – движение навстречу друг другу.
Основная и дополнительная литература по теме урока:
1. Моро М.И.,Бантова М.А. и др. Математика 4 класс. Учебник для общеобразовательных организаций. Ч.2 – М.; Просвещение, 2017. – с.6-8.
2. Моро М. И., Волкова С. И. Математика. Рабочая тетрадь 4 класс. Часть 2. М.; Просвещение, 2016. – с.15.
3. Волкова С. И. Математика. Проверочные работы 4 класс. М.; Просвещение, 2017. – с.54.
Теоретический материал для самостоятельного изучения
Рассмотрим новый вид задач, задачи на встречное движение. Автобус и автомобиль выехали одновременно навстречу друг другу из двух городов и встретились через 3 ч. Автобус ехал со скоростью 60 км/ч, а автомобиль – 90 км/ч.
Найдите расстояние между городами. Это задача на встречное движение, потому что в ней речь идёт о двух транспортных средствах, которые движутся навстречу друг другу. При этом расстояние между ними сокращается.
После встречи автобус и автомобиль движутся в противоположных направлениях, удаляются друг от друга. Это уже другой вид движения и другой тип задач. Таким образом, существует встречное движение (навстречу друг другу) и движение в противоположных направлениях.
Сделаем чертёж к нашей задаче. На чертеже отрезком обозначают расстояние между городами. Его нужно найти. Записываем под отрезком вопросительный знак. Автобус и автомобиль движутся навстречу друг другу. Покажем это на чертеже стрелками.
В условии задачи даны скорости движения машин. Запишем их на чертеже. Место встречи машин отмечено флажком. Обрати внимание, что автомобиль двигался быстрее автобуса. Он проехал большее расстояние, чем автобус. Поэтому флажок на чертеже располагается ближе к тому месту, откуда выехал автобус. Время в пути автобуса и автомобиля одинаковое, 3 часа. Поэтому отрезки, обозначающие расстояние, пройденное до встречи каждым транспортным средством, поделим на три равные части. Каждая такая часть будет означать расстояние, пройденное за один час. Заметьте, части слева и справа от флажка получились разными, т.к. разными были скорости движения. Каждая часть слева от флажка обозначает 60 км в час. А каждая часть справа от флажка обозначает 90 км, которые проезжает за один час автомобиль.
Теперь приступим к решению задачи. Общее расстояние между городами складывается из расстояния, которое проехал автобус и расстояния, которое проехал автомобиль до их встречи. Каждое из этих расстояний находится умножением скорости на время. После этого полученные величины надо сложить. Мы ответили на вопрос задачи. Запишем ответ.
1) 60 ∙ 3 = 180 (км) – расстояние, которое проехал автобус.
2) 90 ∙ 3 = 270 (км) – расстояние, которое проехал автомобиль.
3) 180 + 270 = 450 (км) – расстояние между городами.
Ответ: расстояние между городами 450 км.
Эту задачу можно решить другим способом. Автобус и автомобиль начали движение одновременно. После первого часа пути автобус проехал 60 км, а автомобиль 90 км. Значит, за один час они сблизились на 150 км. По другому можно сказать, что скорость сближения машин равна 150 км в час. За следующий час пути автобус и автомобиль сблизились ещё на 150 км. За третий час они сблизились ещё на 150 км. И так, до встречи машины сближались три раза по 150 км, т.к. были в пути 3 часа. Значит, чтобы узнать расстояние между ними в самом начале пути, надо 150 умножить на 3. То есть, скорость сближения умножить на время движения до встречи.
1) 60 + 90 = 150 (км/ч) – скорость сближения.
2) 150 ∙ 3 = 450 (км)
Ответ: расстояние между городами 450 км.
Это второй способ решения задачи.
Расстояние, на которое сближаются движущиеся предметы в единицу времени, называют скоростью сближения.
Задания тренировочного модуля:
1. Вставьте в таблицу пропущенные данные.
Два лыжника вышли одновременно навстречу друг другу из двух посёлков и встретились через 3 часа. Первый лыжник шёл со скоростью 12 км/ч, второй – 14 км/ч. Найдите расстояние между посёлками.
Скорость | Время | Расстояние | |
Первый лыжник | ? | ||
Второй лыжник | ? |
Правильный ответ:
Скорость | Время | Расстояние | |
Первый лыжник | 12 км/ч | 3 ч | ? |
Второй лыжник | 14 км/ч | 3 ч | ? |
2. Распределите решения задач по группам. Перенесите их в соответствующие столбики.
Из двух посёлков, расстояние между которыми 78 км, вышли одновременно навстречу друг другу два лыжника. Первый из них шёл со скоростью 12 км/ч, второй – 14 км/ч. Через сколько часов лыжники встретились? | Из двух посёлков, находящихся на расстоянии 78 км, вышли одновременно навстречу друг другу два лыжника и встретились через 3 ч. Первый лыжник шёл со скоростью 12 км/ч. С какой скоростью шёл второй лыжник? |
Варианты ответа:
(78 – 12 ∙ 3) : 3
78 : (12 + 14)
Правильный вариант:
Из двух посёлков, расстояние между которыми 78 км, вышли одновременно навстречу друг другу два лыжника. Первый из них шёл со скоростью 12 км/ч, второй – 14 км/ч. Через сколько часов лыжники встретились? | Из двух посёлков, находящихся на расстоянии 78 км, вышли одновременно навстречу друг другу два лыжника и встретились через 3 ч. Первый лыжник шёл со скоростью 12 км/ч. С какой скоростью шёл второй лыжник? |
78 : (12 + 14) | (78 – 12· 3) : 3 |
3. Расположите величины по возрастанию.
От порта к бухте отправился катер. В то же время навстречу ему от бухты поплыла вёсельная лодка. Через 20 минут они одновременно проплыли мимо одного и того же пляжа.
Варианты ответа: Скорость катера; Скорость сближения катера и лодки; Скорость лодки.
Правильный вариант: Скорость лодки; Скорость катера; Скорость сближения катера и лодки.
Задачи на скорость, время, расстояние 4 класс | Движение
Мы составили простые и сложные задачи на движение для 4 класса. Они разделены на категории: встречное движение, движение в разных направлениях и другие.
Все решения понятно представлены на странице. Решите несколько задач на движение прямо сейчас!
Задачи на нахождение времени
Витя проехал на электросамокате 39 км. Сколько времени он был в пути, если скорость электросамоката – 13 км/ч?
Решение. Зная его скорость и расстояние, можно вычислить время. Формула “Треугольник SVT” показывает, что T = S : V.
- 39 / 13 = 3 (часа)
На расстоянии 350 км навстречу друг другу выплыли 2 лодки. Их скорости – 30 и 40 км/ч. Они плыли 4 часа. Оставшееся время до встречи они двигались со скоростями по 35 км/ч. Сколько часов они плыли, пока не встретились?
Из одной точки в разные стороны выехали 2 машины. Их скорости – 70 и 140 км/ч. Через 4 часа машина с наибольшей скоростью развернулась и принялась догонять другую. (Все машины ехали). И догнала. Сколько часов транспорт был в пути?
Задачи на нахождение скорости
3Вы должны войти, чтобы пройти эту викторину.
Задачи на нахождение расстояния и скорости
Однажды папа и дедушка решили поспорить, что быстрее: машина или автобус. Начальная скорость у машины – 100 км/ч, а у автобуса – 60 км/ч. И вот они стартовали. При этом известно, что у машины каждый час скорость уменьшается на 10 км, а у автобуса на 10 км увеличивается. Кто будет раньше через 5 часов, если оба начали с одного места и едут в одном направлении?
Котик и собачка с одного места в разных направлениях пробежали по 66 километров. Собачка за 2 часа, а котенок – за 3. С такой же скоростью они вернулись обратно. И с этой же скоростью они бежали в разных направлениях 2 часа. А сколько метров они пробежали вместе?
Папа едет со скоростью 180 км/час. Когда он проехал 45 км, поменял скорость на 120 км/час. Сколько надо времени, чтобы проехать 105 км?
Первые 3 часа папа ехал со скоростью 160 км/ч, а потом снизил скорость в 2 раза. Сколько км он проедет, если время его поездки составляет 5 часов?
Задачи на время, скорость и расстояние
Проверь себя – задачи на движение
2. Скорость Ярослава – 20 км/ч, а скорость папы – от 20 до 30 км/ч. Они ехали 5 часов. Укажите разницу между минимальным и максимальным расстоянием в метрах.
3. Папа и Ярослав выехали на 15 – станционном метро с разных концов. Их скорость – 180 км/ч. До восьмой станции ехать каждому одинаковое расстояние. Одна станция – это 3 минуты. Через сколько секунд они встретятся на восьмой станции?
4. Группа туристов вышла в 9 часов. Их скорость – 12 км/ч. Каждые 14 км группа останавливалась на 20 минут. Но закончили путь туристы в 16 часов. Сколько целых метров они прошли?
Нестандартные задачи на движение 4 класс
Папа и Ярослав выехали одновременно из одной точки со скоростью 50 км/ч. Папа каждый час повышал скорость на 10 км/ч, а Ярослав понижал на столько же. Они ехали 150 км. Назовите примерную до десятков среднюю скорость каждого из них.
Мама ехала навстречу Джулианне. Они выехали с разницей в 1 минуту на самокате. Мама выехала раньше со скоростью 500 м/мин, а Джулианна в 2 раза медленнее. На сколько больше метров проехала мама, если они обе ехали 2 минуты?
Ярослав стартовал на велосипеде и ехал на 6 км/ч медленнее автобуса. Известно, что автобус за два часа проехал в 3 раза больше, чем 20 км. Какова скорость Ярослава?
Мама и Леля выехали одновременно из одной точки со скоростью 60 км/ч. Мама каждый час повышал скорость на 10 км/ч, а Леля понижала на столько же. Они ехали 4 часа. Какое расстояние было между ними?
Задачи на встречное движение
От одного конца города в 12:00 выехала машина. С другого конца города выехал автобус в 11 часов. Расстояние до центра с обеих сторон – 60 км. Кто раньше доберется до центра, если скорость автобуса – 31 км/ч, а скорость машины – на 29 км/ч больше?
Два самолета одновременно взлетели с разных концов авиалинии. Длина авиалинии – 699 км. Скорость первого самолёта – 5 км/мин, а другого – 35 км/мин. Когда самолёт долетает до центра, то он ждёт. На сколько минут второй самолёт добрался до центра быстрее первого?
В 17:00 одновременно выехали 2 велосипедиста. Расстояние между ними – 80 км. Скорость первого велосипедиста – 18 км/ч, а второй на 4 км/ч быстрее. Через сколько часов они встретятся?
Решайте больше задач на движение на этих страницах:
Задачи на движение
Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на движение.
Предварительные навыкиЗадача на нахождение расстояния/скорости/времени
Задача 1. Автомобиль двигается со скоростью 80 км/ч. Сколько километров он проедет за 3 часа?
Решение
Если за один час автомобиль проезжает 80 километров, то за 3 часа он проедет в три раза больше. Чтобы найти расстояние, нужно скорость автомобиля (80км/ч) умножить на время движения (3ч)
80 × 3 = 240 км
Ответ: за 3 часа автомобиль проедет 240 километров.
Задача 2. На автомобиле за 3 часа проехали 180 км с одной и той же скоростью. Чему равна скорость автомобиля?
Решение
Скорость — это расстояние, пройденное телом за единицу времени. Под единицей подразумевается 1 час, 1 минута или 1 секунда.
Если за 3 часа автомобиль проехал 180 километров с одной и той же скоростью, то разделив 180 км на 3 часа мы определим расстояние, которое проезжал автомобиль за один час. А это есть скорость движения. Чтобы определить скорость, нужно пройденное расстояние разделить на время движения:
180 : 3 = 60 км/ч
Ответ: скорость автомобиля составляет 60 км/ч
Задача 3. За 2 часа автомобиль проехал 96 км, а велосипедист за 6 часов проехал 72 км. Во сколько раз автомобиль двигался быстрее велосипедиста?
Решение
Определим скорость движения автомобиля. Для этого разделим пройденное им расстояние (96км) на время его движения (2ч)
96 : 2 = 48 км/ч
Определим скорость движения велосипедиста. Для этого разделим пройденное им расстояние (72км) на время его движения (6ч)
72 : 6 = 12 км/ч
Узнаем во сколько раз автомобиль двигался быстрее велосипедиста. Для этого найдем отношение 48 к 12
Ответ: автомобиль двигался быстрее велосипедиста в 4 раза.
Задача 4. Вертолет преодолел расстояние в 600 км со скоростью 120 км/ч. Сколько времени он был в полете?
Решение
Если за 1 час вертолет преодолевал 120 километров, то узнав сколько таких 120 километров в 600 километрах, мы определим сколько времени он был в полете. Чтобы найти время, нужно пройденное расстояние разделить на скорость движения
600 : 120 = 5 часов
Ответ: вертолет был в пути 5 часов.
Задача 5. Вертолет летел 6 часов со скоростью 160 км/ч. Какое расстояние он преодолел за это время?
Решение
Если за 1 час вертолет преодолевал 160 км, то за 6 часов, он преодолел в шесть раз больше. Чтобы определить расстояние, нужно скорость движения умножить на время
160 × 6 = 960 км
Ответ: за 6 часов вертолет преодолел 960 км.
Задача 6. Расстояние от Перми до Казани, равное 723 км, автомобиль проехал за 13 часов. Первые 9 часов он ехал со скоростью 55 км/ч. Определить скорость автомобиля в оставшееся время.
Решение
Определим сколько километров автомобиль проехал за первые 9 часов. Для этого умножим скорость с которой он ехал первые девять часов (55км/ч) на 9
55 × 9 = 495 км
Определим сколько осталось проехать. Для этого вычтем из общего расстояния (723км) расстояние, пройденное за первые 9 часов движения
723 − 495 = 228 км
Эти 228 километров автомобиль проехал за оставшиеся 4 часа. Чтобы определить скорость автомобиля в оставшееся время, нужно 228 километров разделить на 4 часа:
228 : 4 = 57 км/ч
Ответ: скорость автомобиля в оставшееся время составляла 57 км/ч
Скорость сближения
Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.
Например, если из двух пунктов навстречу друг другу отправятся два пешехода, причем скорость первого будет 100 м/м, а второго — 105 м/м, то скорость сближения будет составлять 100 + 105, то есть 205 м/м. Это значит, что каждую минуту расстояние между пешеходами будет уменьшáться на 205 метров
Чтобы найти скорость сближения, нужно сложить скорости объектов.
Предположим, что пешеходы встретились через три минуты после начала движения. Зная, что они встретились через три минуты, мы можем узнать расстояние между двумя пунктами.
Каждую минуту пешеходы преодолевали расстояние равное двухсот пяти метрам. Через 3 минуты они встретились. Значит умножив скорость сближения на время движения, можно определить расстояние между двумя пунктами:
205 × 3 = 615 метров
Можно и по другому определить расстояние между пунктами. Для этого следует найти расстояние, которое прошел каждый пешеход до встречи.
Так, первый пешеход шел со скоростью 100 метров в минуту. Встреча состоялась через три минуты, значит за 3 минуты он прошел 100 × 3 метров
100 × 3 = 300 метров
А второй пешеход шел со скоростью 105 метров в минуту. За три минуты он прошел 105 × 3 метров
105 × 3 = 315 метров
Теперь можно сложить полученные результаты и таким образом определить расстояние между двумя пунктами:
300 м + 315 м = 615 м
Задача 1. Из двух населенных пунктов навстречу друг другу выехали одновременно два велосипедиста. Скорость первого велосипедиста 10 км/ч, а скорость второго — 12 км/ч. Через 2 часа они встретились. Определите расстояние между населенными пунктами
Решение
Найдем скорость сближения велосипедистов
10 км/ч + 12 км/ч = 22 км/ч
Определим расстояние между населенными пунктами. Для этого скорость сближения умножим на время движения
22 × 2 = 44 км
Решим эту задачу вторым способом. Для этого найдем расстояния, пройденные велосипедистами и сложим полученные результаты.
Найдем расстояние, пройденное первым велосипедистом:
10 × 2 = 20 км
Найдем расстояние, пройденное вторым велосипедистом:
12 × 2 = 24 км
Сложим полученные расстояния:
20 км + 24 км = 44 км
Ответ: расстояние между населенными пунктами составляет 44 км.
Задача 2. Из двух населенных пунктов, расстояние между которыми 60 км, навстречу друг другу выехали одновременно два велосипедиста. Скорость первого велосипедиста 14 км/ч, а скорость второго — 16 км/ч. Через сколько часов они встретились?
Решение
Найдем скорость сближения велосипедистов:
14 км/ч + 16 км/ч = 30 км/ч
За один час расстояние между велосипедистами уменьшается на 30 километров. Чтобы определить через сколько часов они встретятся, нужно расстояние между населенными пунктами разделить на скорость сближения:
60 : 30 = 2 часа
Значит велосипедисты встретились через два часа
Ответ: велосипедисты встретились через 2 часа.
Задача 3. Из двух населенных пунктов, расстояние между которыми 56 км, навстречу друг другу выехали одновременно два велосипедиста. Через два часа они встретились. Первый велосипедист ехал со скоростью 12 км/ч. Определить скорость второго велосипедиста.
Решение
Определим расстояние пройденное первым велосипедистом. Как и второй велосипедист в пути он провел 2 часа. Умножив скорость первого велосипедиста на 2 часа, мы сможем узнать сколько километров он прошел до встречи
12 × 2 = 24 км
За два часа первый велосипедист прошел 24 км. За один час он прошел 24:2, то есть 12 км. Изобразим это графически
Вычтем из общего расстояния (56 км) расстояние, пройденное первым велосипедистом (24 км). Так мы определим сколько километров прошел второй велосипедист:
56 км − 24 км = 32 км
Второй велосипедист, как и первый провел в пути 2 часа. Если мы разделим пройденное им расстояние на 2 часа, то узнаем с какой скоростью он двигался:
32 : 2 = 16 км/ч
Значит скорость второго велосипедиста составляет 16 км/ч.
Ответ: скорость второго велосипедиста составляет 16 км/ч.
Скорость удаления
Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.
Например, если два пешехода отправятся из одного и того же пункта в противоположных направлениях, причем скорость первого будет 4 км/ч, а скорость второго 6 км/ч, то скорость удаления будет составлять 4+6, то есть 10 км/ч. Каждый час расстояние между двумя пешеходами будет увеличиться на 10 километров.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Так, за первый час расстояние между пешеходами будет составлять 10 километров. На следующем рисунке можно увидеть, как это происходит
Видно, что первый пешеход прошел свои 4 километра за первый час. Второй пешеход также прошел свои 6 километров за первый час. Итого за первый час расстояние между ними стало 4+6, то есть 10 километров.
Через два часа расстояние между пешеходами будет составлять 10×2, то есть 20 километров. На следующем рисунке можно увидеть, как это происходит:
Задача 1. От одной станции отправились одновременно в противоположных направлениях товарный поезд и пассажирский экспресс. Скорость товарного поезда составляла 40 км/ч, скорость экспресса 180 км/ч. Какое расстояние будет между этими поездами через 2 часа?
Решение
Определим скорость удаления поездов. Для этого сложим их скорости:
40 + 180 = 220 км/ч
Получили скорость удаления поездов равную 220 км/ч. Данная скорость показывает, что за час расстояние между поездами будет увеличиваться на 220 километров. Чтобы узнать какое расстояние будет между поездами через два часа, нужно 220 умножить на 2
220 × 2 = 440 км
Ответ: через 2 часа расстояние будет между поездами будет 440 километров.
Задача 2. Из пункта одновременно в противоположных направлениях отправились велосипедист и мотоциклист. Скорость велосипедиста 16 км/ч, а скорость мотоциклиста — 40 км/ч. Какое расстояние будет между велосипедистом и мотоциклистом через 2 часа?
Решение
Определим скорость удаления велосипедиста и мотоциклиста. Для этого сложим их скорости:
16 км/ч + 40 км/ч = 56 км/ч
Определим расстояние, которое будет между велосипедистом и мотоциклистом через 2 часа. Для этого скорость удаления (56км/ч) умножим на 2 часа
56 × 2 = 112 км
Ответ: через 2 часа расстояние между велосипедистом и мотоциклистом будет 112 км.
Задача 3. Из пункта одновременно в противоположных направлениях отправились велосипедист и мотоциклист. Скорость велосипедиста 10 км/ч, а скорость мотоциклиста — 30 км/ч. Через сколько часов расстояние между ними будет 80 км?
Решение
Определим скорость удаления велосипедиста и мотоциклиста. Для этого сложим их скорости:
10 км/ч + 30 км/ч = 40 км/ч
За один час расстояние между велосипедистом и мотоциклистом увеличивается на 40 километров. Чтобы узнать через сколько часов расстояние между ними будет 80 км, нужно определить сколько раз 80 км содержит по 40 км
80 : 40 = 2
Ответ: через 2 часа после начала движения, между велосипедистом и мотоциклистом будет 80 километров.
Задача 4. Из пункта одновременно в противоположных направлениях отправились велосипедист и мотоциклист. Через 2 часа расстояние между ними было 90 км. Скорость велосипедиста составляла 15 км/ч. Определить скорость мотоциклиста
Решение
Определим расстояние, пройденное велосипедистом за 2 часа. Для этого умножим его скорость (15 км/ч) на 2 часа
15 × 2 = 30 км
На рисунке видно, что велосипедист прошел по 15 километров в каждом часе. Итого за два часа он прошел 30 километров.
Вычтем из общего расстояния (90 км) расстояние, пройденное велосипедистом (30 км). Так мы определим сколько километров прошел мотоциклист:
90 км − 30 км = 60 км
Мотоциклист за два часа прошел 60 километров. Если мы разделим пройденное им расстояние на 2 часа, то узнаем с какой скоростью он двигался:
60 : 2 = 30 км/ч
Значит скорость мотоциклиста составляла 30 км/ч.
Ответ: скорость мотоциклиста составляла 30 км/ч.
Задача на движение объектов в одном направлении
В предыдущей теме мы рассматривали задачи в которых объекты (люди, машины, лодки) двигались либо навстречу другу другу либо в противоположных направлениях. При этом мы находили различные расстояния, которые изменялись между объектами в течении определенного времени. Эти расстояния были либо скоростями сближения либо скоростями удаления.
В первом случае мы находили скорость сближения — в ситуации, когда два объекта двигались навстречу друг другу. За единицу времени расстояние между объектами уменьшалось на определенное расстояние
Во втором случае мы находили скорость удаления — в ситуации, когда два объекта двигались в противоположных направлениях. За единицу времени расстояние между объектами увеличивалось на определенное расстояние
Но объекты также могут двигаться в одном направлении, причем с различной скоростью. Например, из одного пункта одновременно могут выехать велосипедист и мотоциклист, причем скорость велосипедиста может составлять 20 километров в час, а скорость мотоциклиста — 40 километров в час
На рисунке видно, что мотоциклист впереди велосипедиста на двадцать километров. Связано это с тем, что в час он преодолевает на 20 километров больше, чем велосипедист. Поэтому каждый час расстояние между велосипедистом и мотоциклистом будет увеличиваться на двадцать километров.
В данном случае 20 км/ч являются скоростью удаления мотоциклиста от велосипедиста.
Через два часа расстояние, пройденное велосипедистом будет составлять 40 км. Мотоциклист же проедет 80 км, отдалившись от велосипедиста еще на двадцать километров — итого расстояние между ними составит 40 километров
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
В приведенном выше примере, скорость удаления составляет 20 км/ч. Её можно найти путем вычитания скорости велосипедиста из скорости мотоциклиста. Скорость велосипедиста составляла 20 км/ч, а скорость мотоциклиста — 40 км/ч. Скорость мотоциклиста больше, поэтому из 40 вычитаем 20
40 км/ч − 20 км/ч = 20 км/ч
Задача 1. Из города в одном и том же направлении выехали легковой автомобиль и автобус. Скорость автомобиля 120 км/ч, а скорость автобуса 80 км/ч. Какое расстояние будет между ними через 1 час? 2 часа?
Решение
Найдем скорость удаления. Для этого из большей скорости вычтем меньшую
120 км/ч − 80 км/ч = 40 км/ч
Каждый час легковой автомобиль отдаляется от автобуса на 40 километров. За один час расстояние между автомобилем и автобусом будет 40 км. За 2 часа в два раза больше:
40 × 2 = 80 км
Ответ: через один час расстояние между автомобилем и автобусом будет 40 км, через два часа — 80 км.
Рассмотрим ситуацию в которой объекты начали свое движение из разных пунктов, но в одном направлении.
Пусть имеется дом, школа и аттракцион. От дома до школы 700 метров
Два пешехода отправились в аттракцион в одно и то же время. Причем первый пешеход отправился в аттракцион от дома со скоростью 100 метров в минуту, а второй пешеход отправился в аттракцион от школы со скоростью 80 метров в минуту. Какое расстояние будет между пешеходами через 2 минуты? Через сколько минут после начала движения первый пешеход догонит второго?
Ответим на первый вопрос задачи — какое расстояние будет между пешеходами через 2 минуты?
Определим расстояние, пройденное первым пешеходом за 2 минуты. Он двигался со скоростью 100 метров в минуту. За две минуты он пройдет в два раза больше, то есть 200 метров
100 × 2 = 200 метров
Определим расстояние, пройденное вторым пешеходом за 2 минуты. Он двигался со скоростью 80 метров в минуту. За две минуты он пройдет в два раза больше, то есть 160 метров
80 × 2 = 160 метров
Теперь нужно найти расстояние между пешеходами
Чтобы найти расстояние между пешеходами, можно к расстоянию от дома до школы (700м) прибавить расстояние, пройденное вторым пешеходом (160м) и из полученного результата вычесть расстояние, пройденное первым пешеходом (200м)
700 м + 160 м = 860 м
860 м − 200 м = 660 м
Либо из расстояния от дома до школы (700м) вычесть расстояние, пройденное первым пешеходом (200м), и к полученному результату прибавить расстояние, пройденное вторым пешеходом (160м)
700 м − 200 м = 500 м
500 м + 160 м = 660 м
Таким образом, через две минуты расстояние между пешеходами будет составлять 660 метров
Попробуем ответить на следующий вопрос задачи: через сколько минут после начала движения первый пешеход догонит второго?
Давайте посмотрим какой была ситуация в самом начале пути — когда пешеходы еще не начали своё движение
Как видно на рисунке, расстояние между пешеходами в начале пути составляло 700 метров. Но уже через минуту после начала движения расстояние между ними будет составлять 680 метров, поскольку первый пешеход двигается на 20 метров быстрее второго:
100 м × 1 = 100 м
80 м × 1 = 80 м
700 м + 80 м − 100 м = 780 м − 100 м = 680 м
Через две минуты после начала движения, расстояние уменьшится еще на 20 метров и будет составлять 660 метров. Это был наш ответ на первый вопрос задачи:
100 м × 2 = 200 м
80 м × 2 = 160 м
700 м + 160 м − 200м = 860 м − 200 м = 660 м
Через три минуты расстояние уменьшится еще на 20 метров и будет уже составлять 640 метров:
100 м × 3 = 300 м
80 м × 3 = 240 м
700 м + 240 м − 300м = 940 м − 300 м = 640 м
Мы видим, что с каждой минутой первый пешеход будет приближáться ко второму на 20 метров, и в конце концов догонит его. Можно сказать, что скорость равная двадцати метрам в минуту является скоростью сближения пешеходов. Правила нахождения скорости сближения и удаления при движении в одном направлении идентичны.
Чтобы найти скорость сближения при движении в одном направлении, нужно из большей скорости вычесть меньшую.
А раз изначальные 700 метров с каждой минутой уменьшаются на одинаковые 20 метров, то мы можем узнать сколько раз 700 метров содержат по 20 метров, тем самым определяя через сколько минут первый пешеход догонит второго
700 : 20 = 35
Значит через 35 минут после начала движения первый пешеход догонит второго. Для интереса узнаем сколько метров прошел к этому времени каждый пешеход. Первый двигался со скоростью 100 метров в минуту. За 35 минут он прошел в 35 раз больше
100 × 35 = 3500 м
Второй шел со скоростью 80 метров в минуту. За 35 минут он прошел в 35 раз больше
80 × 35 = 2800 м
Первый прошел 3500 метров, а второй 2800 метров. Первый прошел на 700 метров больше, поскольку он шел от дома. Если вычесть эти 700 метров из 3500, то мы получим 2800 м
Рассмотрим ситуацию в которой объекты движутся в одном направлении, но один из объектов начал своё движение раньше другого.
Пусть имеется дом и школа. Первый пешеход отправился в школу со скоростью 80 метров в минуту. Через 5 минут вслед за ним в школу отправился второй пешеход со скоростью 100 метров в минуту. Через сколько минут второй пешеход догонит первого?
Второй пешеход начал свое движение через 5 минут. К этому времени первый пешеход уже отдалился от него на какое-то расстояние. Найдём это расстояние. Для этого умножим его скорость (80 м/м) на 5 минут
80 × 5 = 400 метров
Первый пешеход отдалился от второго на 400 метров. Поэтому в момент, когда второй пешеход начнет свое движение, между ними будут эти самые 400 метров.
Но второй пешеход двигается со скоростью 100 метров в минуту. То есть двигается на 20 метров быстрее первого пешехода, а значит с каждой минутой расстояние между ними будет уменьшáться на 20 метров. Наша задача узнать через сколько минут это произойдет.
Например, уже через минуту расстояние между пешеходами будет составлять 380 метров. Первый пешеход к своим 400 метрам пройдет еще 80 метров, а второй пройдет 100 метров
Принцип здесь такой-же, как и в предыдущей задаче. Расстояние между пешеходами в момент движения второго пешехода необходимо разделить на скорость сближения пешеходов. Скорость сближения в данном случае равна двадцати метрам. Поэтому, чтобы определить через сколько минут второй пешеход догонит первого, нужно 400 метров разделить на 20
400 : 20 = 20
Значит через 20 минут второй пешеход догонит первого.
Задача 2. Из двух сел, расстояние между которыми 40 км, одновременно в одном направлении выехали автобус и велосипедист. Скорость велосипедиста 15 км/ч, а скорость автобуса 35 км/ч. Через сколько часов автобус догонит велосипедиста?
Решение
Найдем скорость сближения
35 км/ч − 15 км/ч = 20 км/ч
Определим через часов автобус догонит велосипедиста
40 : 20 = 2
Ответ: автобус догонит велосипедиста через 2 часа.
Задача на движение по реке
Суда двигаются по реке с различной скоростью. При этом они могут двигаться, как по течению реки, так и против течения. В зависимости от того, как они двигаются (по или против течения), скорость будет меняться.
Предположим, что скорость реки составляет 3 км/ч. Если спустить лодку на реку, то река унесет лодку со скоростью 3 км/ч.
Если спустить лодку на стоячую воду, в которой отсутствует течение, то и лодка будет стоять. Скорость движения лодки в этом случае будет равна нулю.
Если лодка плывет по стоячей воде, в которой отсутствует течение, то говорят, что лодка плывет с собственной скоростью.
Например, если моторная лодка плывет по стоячей воде со скоростью 40 км/ч, то говорят что собственная скорость моторной лодки составляет 40 км/ч.
Как определить скорость судна?
Если судно плывет по течению реки, то к собственной скорости судна нужно прибавить скорость течения реки.
Например, если моторная лодка плывет со скоростью 30 км/ч по течению реки, и скорость течения реки составляет 2 км/ч, то к собственной скорости моторной лодки (30 км/ч) необходимо прибавить скорость течения реки (2 км/ч)
30 км/ч + 2 км/ч = 32 км/ч
Течение реки можно сказать помогает моторной лодке дополнительной скоростью равной двум километрам в час.
Если судно плывет против течения реки, то из собственной скорости судна нужно вычесть скорость течения реки.
Например, если моторная лодка плывет со скоростью 30 км/ч против течения реки, и скорость течения реки составляет 2 км/ч, то из собственной скорости моторной лодки (30 км/ч) необходимо вычесть скорость течения реки (2 км/ч)
30 км/ч − 2 км/ч = 28 км/ч
Течение реки в этом случае препятствует моторной лодке свободно двигаться вперед, снижая её скорость на два километра в час.
Задача 1. Скорость катера 40 км/ч, а скорость течения реки 3 км/ч. С какой скоростью катер будет двигаться по течению реки? Против течения реки?
Ответ:
Если катер будет двигаться по течения реки, то скорость его движения составит 40 + 3, то есть 43 км/ч.
Если катер будет двигаться против течения реки, то скорость его движения составит 40 − 3, то есть 37 км/ч.
Задача 2. Скорость теплохода в стоячей воде — 23 км/ч. Скорость течения реки — 3 км/ч. Какой путь пройдет теплоход за 3 часа по течению реки? Против течения?
Решение
Собственная скорость теплохода составляет 23 км/ч. Если теплоход будет двигаться по течению реки, то скорость его движения составит 23 + 3, то есть 26 км/ч. За три часа он пройдет в три раза больше
26 × 3 = 78 км
Если теплоход будет двигаться против течения реки, то скорость его движения составит 23 − 3, то есть 20 км/ч. За три часа он пройдет в три раза больше
20 × 3 = 60 км
Задача 3. Расстояние от пункта А до пункта B лодка преодолела за 3 часа 20 минут, а расстояние от пункта B до А — за 2 часа 50 минут. В каком направлении течет река: от А к В или от В к А, если известно, что скорость яхты не менялась?
Решение
Скорость яхты не менялась. Узнаем на какой путь она затратила больше времени: на путь от А до В или на путь от В до А. Тот путь, который затратил больше времени будет тем путем, течение реки которого шло против яхты
3 часа 20 минут больше, чем 2 часа 50 минут. Это значит, что течение реки снизило скорость яхты и это отразилось на времени пути. 3 часа 20 минут это время, затраченное на путь от от А до В. Значит река течет от пункта B к пункту А
Задача 4. За какое время при движении против течения реки
теплоход пройдет 204 км, если его собственная скорость
15 км/ч, а скорость течения в 5 раз меньше собственной
скорости теплохода?
Решение
Требуется найти время за которое теплоход пройдет 204 километра против течения реки. Собственная скорость теплохода составляет 15 км/ч. Двигается он против течения реки, поэтому нужно определить его скорость при таком движении.
Чтобы определить скорость против течения реки, нужно из собственной скорости теплохода (15 км/ч) вычесть скорость движения реки. В условии сказано, что скорость течения реки в 5 раз меньше собственной скорости теплохода, поэтому сначала определим скорость течения реки. Для этого уменьшим 15 км/ч в пять раз
15 : 5 = 3 км/ч
Скорость течения реки составляет 3 км/ч. Вычтем эту скорость из скорости движения теплохода
15 км/ч − 3 км/ч = 12 км/ч
Теперь определим время за которое теплоход пройдет 204 км при скорости 12 км/ч. В час теплоход проходит 12 километров. Чтобы узнать за сколько часов он пройдет 204 километра, нужно определить сколько раз 204 километра содержит по 12 километров
204 : 12 = 17 ч
Ответ: теплоход пройдет 204 километра за 17 часов
Задача 5. Двигаясь по течению реки, за 6 часов лодка
прошла 102 км. Определите собственную скорость лодки,
если скорость течения – 4 км/ч.
Решение
Узнаем с какой скоростью лодка двигалась по реке. Для этого пройденное расстояние (102км) разделим на время движения (6ч)
102 : 6 = 17 км/ч
Определим собственную скорость лодки. Для этого из скорости по которой она двигалась по реке (17 км/ч) вычтем скорость течения реки (4 км/ч)
17 − 4 = 13 км/ч
Задача 6. Двигаясь против течения реки, за 5 часов лодка
прошла 110 км. Определите собственную скорость лодки,
если скорость течения – 4 км/ч.
Решение
Узнаем с какой скоростью лодка двигалась по реке. Для этого пройденное расстояние (110км) разделим на время движения (5ч)
110 : 5 = 22 км/ч
Определим собственную скорость лодки. В условии сказано, что она двигалась против течения реки. Скорость течения реки составляла 4 км/ч. Это значит, что собственная скорость лодки была уменьшена на 4. Наша задача прибавить эти 4 км/ч и узнать собственную скорость лодки
22 + 4 = 26 км/ч
Ответ: собственная скорость лодки составляет 26 км/ч
Задача 7. За какое время при движении против течения реки лодка
пройдет 56 км, если скорость течения – 2 км/ч, а её
собственная скорость на 8 км/ч больше скорости течения?
Решение
Найдем собственную скорость лодки. В условии сказано, что она на 8 км/ч больше скорости течения. Поэтому для определения собственной скорости лодки, к скорости течения (2 км/ч) прибавим еще 8 км/ч
2 км/ч + 8 км/ч = 10 км/ч
Лодка движется против течения реки, поэтому из собственной скорости лодки (10 км/ч) вычтем скорость движения реки (2 км/ч)
10 км/ч − 2 км/ч = 8 км/ч
Узнаем за какое время лодка пройдет 56 км. Для этого расстояние (56км) разделим на скорость движения лодки:
56 : 8 = 7 ч
Ответ: при движении против течения реки лодка пройдет 56 км за 7 часов
Задачи для самостоятельного решения
Задача 1. Сколько времени потребуется пешеходу, чтобы пройти 20 км, если скорость его равна 5 км/ч?
Решение
За один час пешеход проходит 5 километров. Чтобы определить за какое время он пройдет 20 км, нужно узнать сколько раз 20 километров содержат по 5 км. Либо воспользоваться правилом нахождения времени: разделить пройденное расстояние на скорость движения
20 : 5 = 4 часа
Задача 2. Из пункта А в пункт В велосипедист ехал 5 часов со скоростью 16 км/ч, а обратно он ехал по тому же пути со скоростью 10 км/ч. Сколько времени потратил велосипедист на обратный путь?
Решение
Определим расстояние от пункта А до пункта В. Для этого умножим скорость с которой ехал велосипедист из пункта А в пункт В (16км/ч) на время движения (5ч)
16 × 5 = 80 км
Определим сколько времени велосипедист затратил на обратный путь. Для этого расстояние (80км) разделим на скорость движения (10км/ч)
80 : 10 = 8 ч
Задача 3. Велосипедист ехал 6 ч с некоторой скоростью. После того как он проехал ещё 11 км с той же скоростью, его путь стал равным 83 км. С какой скоростью ехал велосипедист?
Решение
Определим путь, пройденный велосипедистом за 6 часов. Для этого из 83 км вычтем путь, который он прошел после шести часов движения (11км)
83 − 11 = 72 км
Определим с какой скоростью ехал велосипедист первые 6 часов. Для этого разделим 72 км на 6 часов
72 : 6 = 12 км/ч
Поскольку в условии задаче сказано, что остальные 11 км велосипедист проехал с той же скоростью, что и в первые 6 часов движения, то скорость равная 12 км/ч является ответом к задаче.
Ответ: велосипедист ехал со скоростью 12 км/ч.
Задача 4. Двигаясь против течения реки, расстояние в 72 км теплоход проходит за 4ч, а плот такое же расстояние проплывает за 36 ч. За сколько часов теплоход проплывет расстояние 110 км, если будет плыть по течению реки?
Решение
Найдем скорость течения реки. В условии сказано, что плот может проплыть 72 километра за 36 часов. Плот не может двигаться против течения реки. Значит скорость плота с которой он преодолевает эти 72 километра и является скоростью течения реки. Чтобы найти эту скорость, нужно 72 километра разделить на 36 часов
72 : 36 = 2 км/ч
Найдем собственную скорость теплохода. Сначала найдем скорость его движения против течения реки. Для этого разделим 72 километра на 4 часа
72 : 4 = 18 км/ч
Если против течения реки скорость теплохода составляет 18 км/ч, то собственная его скорость равна 18+2, то есть 20 км/ч. А по течению реки его скорость будет составлять 20+2, то есть 22 км/ч
Разделив 110 километров на скорость движения теплохода по течению реки (22 км/ч), можно узнать за сколько часов теплоход проплывет эти 110 километров
110 : 22 = 5 ч
Ответ: по течению реки теплоход проплывет 110 километров за 5 часов.
Задача 5. Из одного пункта одновременно в противоположных направлениях выехали два велосипедиста. Один из них ехал со скоростью 11 км/ч, а второй со скоростью 13 км/ч. Какое расстояние будет между ними через 4 часа?
Решение
Найдем скорость удаления велосипедистов
11 + 13 = 24 км
Узнаем какое расстояние будет между ними через 4 часа
24 × 4 = 96 км
Ответ: через 4 часа расстояние между велосипедистами будет 96 км.
Задача 6. От двух пристаней одновременно навстречу друг другу отошли два теплохода, и через 6 часов они встретились. Какое расстояние до встречи прошел каждый теплоход и какое расстояние между пристанями, если один теплоход шел со скоростью 21 км/ч, а другой — со скоростью 24 км/ч?
Решение
Определим расстояние, пройденное первым теплоходом. Для этого умножим его скорость (21 км/ч) на время движения до встречи (6ч)
21 × 6 = 126 км
Определим расстояние, пройденное вторым теплоходом. Для этого умножим его скорость (24 км/ч) на время движения до встречи (6ч)
24 × 6 = 144 км
Определим расстояние между пристанями. Для этого сложим расстояния, пройденные первым и вторым теплоходами
126 км + 144 км = 270 км
Ответ: первый теплоход прошел 126 км, второй — 144 км. Расстояние между пристанями составляет 270 км.
Задача 7. Одновременно из Москвы и Уфы вышли два поезда. Через 16 часов они встретились. Московский поезд шел со скоростью 51 км/ч. С какой скоростью шел поезд, вышедший из Уфы, если расстояние между Москвой и Уфой 1520 км? Какое расстояние было между поездами через 5 часов после их встречи?
Решение
Определим сколько километров до встречи прошел поезд, вышедший из Москвы. Для этого умножим его скорость (51 км/ч) на 16 часов
51 × 16 = 816 км
Узнаем сколько километров до встречи прошел поезд, вышедший из Уфы. Для этого из расстояния между Москвой и Уфой (1520км) вычтем расстояние, пройденное поездом, вышедшим из Москвы
1520 − 816 = 704 км
Определим скорость с которой шел поезд, вышедший из Уфы. Для этого расстояние, пройденное им до встречи, нужно разделить на 16 часов
704 : 16 = 44 км/ч
Определим расстояние, которое будет между поездами через 5 часов после их встречи. Для этого найдем скорость удаления поездов и умножим эту скорость на 5
51 км/ч + 44 км/ч = 95 км/ч
95 × 5 = 475 км.
Ответ: поезд, вышедший из Уфы, шел со скоростью 44 км/ч. Через 5 часов после их встречи поездов расстояние между ними будет составлять 475 км.
Задача 8. Из одного пункта одновременно в противоположных направлениях отправились два автобуса. Скорость одного автобуса 48 км/ч, другого на 6 км/ч больше. Через сколько часов расстояние между автобусами будет равно 510 км?
Решение
Найдем скорость второго автобуса. Она на 6 км/ч больше скорости первого автобуса
48 км/ч + 6 км/ч = 54 км/ч
Найдем скорость удаления автобусов. Для этого сложим их скорости:
48 км/ч + 54 км/ч = 102 км/ч
За час расстояние между автобусами увеличивается на 102 километра. Чтобы узнать через сколько часов расстояние между ними будет 510 км, нужно узнать сколько раз 510 км содержит по 102 км/ч
510 : 102 = 5 ч
Ответ: 510 км между автобусами будет через 5 часов.
Задача 9. Расстояние от Ростова-на-Дону до Москвы 1230 км. Из Москвы и Ростова навстречу друг другу вышли два поезда. Поезд из Москвы идет со скоростью 63 км/ч, а скорость ростовского поезда составляет скорости московского поезда. На каком расстоянии от Ростова встретятся поезда?Решение
Найдем скорость ростовского поезда. Она составляет скорости московского поезда. Поэтому чтобы определить скорость ростовского поезда, нужно найти от 63 км
63 : 21 × 20 = 3 × 20 = 60 км/ч
Найдем скорость сближения поездов
63 км/ч + 60 км/ч = 123 км/ч
Определим через сколько часов поезда встретятся
1230 : 123 = 10 ч
Узнаем на каком расстоянии от Ростова встретятся поезда. Для этого достаточно найти расстояние, пройденное ростовским поездом до встречи
60 × 10 = 600 км.
Ответ: поезда встретятся на расстоянии 600 км от Ростова.
Задача 10. От двух пристаней, расстояние между которыми 75 км, навстречу друг другу одновременно отошли две моторные лодки. Одна шла со скоростью 16 км/ч, а скорость другой составляла 75% скорости первой лодки. Какое расстояние будет между лодками через 2 ч?
Решение
Найдем скорость второй лодки. Она составляет 75% скорости первой лодки. Поэтому чтобы найти скорость второй лодки, нужно 75% от 16 км
16 × 0,75 = 12 км/ч
Найдем скорость сближения лодок
16 км/ч + 12 км/ч = 28 км/ч
С каждым часом расстояние между лодками будет уменьшáться на 28 км. Через 2 часа оно уменьшится на 28×2, то есть на 56 км. Чтобы узнать какое будет расстояние между лодками в этот момент, нужно из 75 км вычесть 56 км
75 км − 56 км = 19 км
Ответ: через 2 часа между лодками будет 19 км.
Задача 11. Легковая машина, скорость которой 62 км/ч, догоняет грузовую машину, скорость которой 47 км/ч. Через сколько времени и на каком расстоянии от начала движения легковая автомашина догонит грузовую, если первоначальное расстояние между ними было 60 км?
Решение
Найдем скорость сближения
62 км/ч − 47 км/ч = 15 км/ч
Если первоначально расстояние между машинами было 60 километров, то с каждым часом это расстояние будет уменьшáться на 15 км, и в конце концов легковая машина догонит грузовую. Чтобы узнать через сколько часов это произойдет, нужно определить сколько раз 60 км содержит по 15 км
60 : 15 = 4 ч
Узнаем на каком расстоянии от начала движения легковая машина догнала грузовую. Для этого умножим скорость легковой машины (62 км/ч) на время её движения до встречи (4ч)
62 × 4 = 248 км
Ответ: легковая машина догонит грузовую через 4 часа. В момент встречи легковая машина будет на расстоянии 248 км от начала движения.
Задача 12. Из одного пункта в одном направлении одновременно выезжали два мотоциклиста. Скорость одного 35 км/ч, а скорость другого составляла 80% скорости первого мотоциклиста. Какое расстояние будет между ними через 5 часов?
Решение
Найдем скорость второго мотоциклиста. Она составляет 80% скорости первого мотоциклиста. Поэтому чтобы найти скорость второго мотоциклиста, нужно найти 80% от 35 км/ч
35 × 0,80 = 28 км/ч
Первый мотоциклист двигается на 35-28 км/ч быстрее
35 км/ч − 28 км/ч = 7 км/ч
За один час первый мотоциклиста преодолевает на 7 километров больше. С каждым часом она будет приближáться ко второму мотоциклисту на эти 7 километров.
Через 5 часов первый мотоциклист пройдет 35×5, то есть 175 км, а второй мотоциклист пройдет 28×5, то есть 140 км. Определим расстояние, которое между ними. Для этого из 175 км вычтем 140 км
175 − 140 = 35 км
Ответ: через 5 часов расстояние между мотоциклистами будет 35 км.
Задача 13. Мотоциклист, скорость которого 43 км/ч, догоняет велосипедиста, скорость которого 13 км/ч. Через сколько часов мотоциклист догонит велосипедиста, если первоначальное расстояние между ними было 120 км?
Решение
Найдем скорость сближения:
43 км/ч − 13 км/ч = 30 км/ч
Если первоначально расстояние между мотоциклистом и велосипедистом было 120 километров, то с каждым часом это расстояние будет уменьшáться на 30 км, и в конце концов мотоциклист догонит велосипедиста. Чтобы узнать через сколько часов это произойдет, нужно определить сколько раз 120 км содержит по 30 км
120 : 30 = 4 ч
Значит через 4 часа мотоциклист догонит велосипедиста
На рисунке представлено движение мотоциклиста и велосипедиста. Видно, что через 4 часа после начала движения они сровнялись.
Ответ: мотоциклист догонит велосипедиста через 4 часа.
Задача 14. Велосипедист, скорость которого 12 км/ч, догоняет велосипедиста, скорость которого составляет 75 % его скорости. Через 6 часов второй велосипедист догнал велосипедиста, ехавшего первым. Какое расстояние было между велосипедистами первоначально?
Решение
Определим скорость велосипедиста, ехавшего впереди. Для этого найдем 75% от скорости велосипедиста, ехавшего сзади:
12 × 0,75 = 9 км/ч — скорость ехавшего впереди
Узнаем сколько километров проехал каждый велосипедист до того, как второй догнал первого:
12 × 6 = 72 км — проехал ехавший сзади
9 × 6 = 54 км — проехал ехавший впереди
Узнаем какое расстояние было между велосипедистами первоначально. Для этого из расстояния, пройденного вторым велосипедистом (который догонял) вычтем расстояние, пройденное первым велосипедистом (которого догнали)
72 км − 54 км = 18 км
Ответ: между велосипедистами первоначально было 18 км.
Задача 15. Автомобиль и автобус выехали одновременно из одного пункта в одном направлении. Скорость автомобиля 53 км/ч, скорость автобуса 41 км/ч. Через сколько часов после выезда автомобиль будет впереди автобуса на 48 км?
Решение
Найдем скорость удаления автомобиля от автобуса
53 км/ч − 41 км/ч = 12 км/ч
С каждым часом автомобиль будет удаляться от автобуса на 12 километров. На рисунке показано положение машин после первого часа движения
Видно, что автомобиль впереди автобуса на 12 км.
Чтобы узнать через сколько часов автомобиль будет впереди автобуса на 48 километров, нужно определить сколько раз 48 км содержит по 12 км
48 : 12 = 4 ч
Ответ: через 4 часа после выезда автомобиль будет впереди автобуса на 48 километров.
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Навигация по записям
Тест Скорость, время, расстояние (4 класс) по математике
Сложность: новичок.Последний раз тест пройден более 24 часов назад.
Материал подготовлен совместно с учителем высшей категории
Опыт работы учителем математики – более 33 лет.
Вопрос 1 из 10
В каких единицах измеряется скорость?
- Правильный ответ
- Неправильный ответ
- Вы и еще 93% ответили правильно
- 93% ответили правильно на этот вопрос
В вопросе ошибка?
Следующий вопросПодсказка 50/50ОтветитьВопрос 2 из 10
Какое слово пропущено? Чтобы найти скорость, нужно расстояние… на время.
- Правильный ответ
- Неправильный ответ
- Вы и еще 92% ответили правильно
- 92% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 3 из 10
Какое слово пропущено? Чтобы найти время, надо расстояние… на скорость.
- Правильный ответ
- Неправильный ответ
- Вы и еще 80% ответили правильно
- 80% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 4 из 10
Какое слово пропущено? Чтобы найти расстояние, надо скорость… на время.
- Правильный ответ
- Неправильный ответ
- Вы и еще 92% ответили правильно
- 92% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 5 из 10
Пешеход за 4 часа прошёл 16 км. С какой скоростью двигался пешеход?
- Правильный ответ
- Неправильный ответ
- Вы и еще 95% ответили правильно
- 95% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 6 из 10
Скорость поезда 60 км/ч. Какое расстояние поезд проедет за 4 часа?
- Правильный ответ
- Неправильный ответ
- Вы и еще 66% ответили правильно
- 66% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 7 из 10
Туристы шли 5 часов со скоростью 15 км/ч. Сколько км прошли туристы?
- Правильный ответ
- Неправильный ответ
- Вы и еще 89% ответили правильно
- 89% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 8 из 10
Расстояние между домом и магазином 600 м. Мальчик прошёл его за 8 мин. Чему равна скорость мальчика?
- Правильный ответ
- Неправильный ответ
- Вы и еще 81% ответили правильно
- 81% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 9 из 10
Найди расстояние между селами, если известно, что мотоциклист проехал его за 3 часа со скоростью 45 км/ч.
- Правильный ответ
- Неправильный ответ
- Вы и еще 81% ответили правильно
- 81% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50ОтветитьВопрос 10 из 10
За какое время проедет автобус расстояние 240 км, если будет двигаться со скоростью 60 км/ч?
- Правильный ответ
- Неправильный ответ
- Вы и еще 89% ответили правильно
- 89% ответили правильно на этот вопрос
В вопросе ошибка?
Подсказка 50/50Ответить
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Светлана Прокопчук
10/10
chashkova-tatyan чашкова
10/10
Ирина Дорохина
19/19
Анна Ножеева
19/19
Ирина Петрова
19/19
Николь Лузинова
19/19
Надежда Абрамова
19/19
Мирослав Реутов
12/19
Артём Мещеряков
19/19
Татьяна Салина
19/19
Рейтинг теста
Средняя оценка: 4.3. Всего получено оценок: 684.
А какую оценку получите вы? Чтобы узнать – пройдите тест.
Скорость, время, расстояние. Задачи по математике 3 класс
Задачи для 3 класса
Числа от 1 до 100
Контрольные работы
Тесты. 3 класс.
Примеры, уравнения
Задачи по математике для 3 класса
Задание 1
Автомобиль проехал 180 км за 3 часа.С какой скоростью он ехал?
Решение
- Всё время движения автомобиля – 3 часа, а пройденый путь – 180 км. Значит за один час он проезжал 180:3=60. Его скорось 60км/ч
Задание 2
Миша прошол на лыжах 80 м за 20 с,а Игорь 45 м за 15 с. Кто из них шёл быстрее?
РешениеМиша затратил больше времени, чем Иигорь,но он и прошёл больше расстояние. Чтобы узнать, кто шёл быстрее,надо сравнить расстояния которий каждый из ребят проходил за одну секунду: 80:20=4 45:15=3. Миша за одну секунду проходил 4 м, а Игорь только 3 м.Значит, Миша шёл быстрее, или с большей скоростью. Говорят так: Миша шёл 4 м в секунду,а Игорь 3 м в секунду.
80 : 20 = 4(м), 45 : 15 = 3(м)
Задание 3
- Объясни смысл предложений:
- а) Самолёт летит со скоростью 800 км/ч.
- б) Скорость теплохода 45 км/ч.
- в) Человек идёт со скоростью 4 км/ч.
- г) Меч-рыба развивает скорость 100 км/ч.
- д) Земля движется по орбите со скоростью 30 км/с.
- е) Черепаха ползёт со скоростью 4 м/мин.
- ж) Поезд идёт со скоростью а км/ч. Какие значения может принимать а?
- Можно ли сравнить скорость движения человека со скоростью черепахи?
Решение
- а) Самолёт пролетает за 1 час 800км.
- б) Теплоход проплывает за 1 час 45км.
- в) Человек проходит за 1 час 4км.
- г) Меч-рыба развивает скорость 100 км/ч.
- д) Земля преодолевает расстояние в 30км. за 1 секунду.
- е) Черепаха проползает 4метра за 1 минуту
- ж) а может быть целым положительным числом
- Скорость черепахи можно сравнить со скоростью человека, если выразить эту скорость в одинаковых величинах, например км/ч
Задание 4
- Найди:
- а) Скорость космического корабля, если он пролетел 56 км за 8 с.
- б) Скорость улитки, если она проползла 35 м за 7 ч.
- в) Скорость плота на реке, если он за 4 ч проплыл 16 км.
- г) Скорость автобуса, если он прошёл 120 км за 3 ч.
- д) Скорость велосипедиста, если он проехал 36 км за 2 ч.
Решение
- а) Скорость корабля 7 км/с
- б) Скорость улитки 5м/ч
- в) Скорость плота 4км/ч
- г) Скорость автобуса 40км/ч
- д) Скорость велосипеда 18км/ч
Задание 5
Решение
- Мальчик идет со скоростью 4км/ч
- Велосипедист едет со скоростью 18км/ч
- Электричка едет со оскоростью 90км/ч
- Скорость машины 60км/ч
- Скорость автобуса 45км/ч
- Скорость ракеты 6км/с
- Скорость самолета 900км/ч
Задание 6
Решение
- Волга едет со скоростью 100км/ч
- Жигули едут со скоростью 90км/ч
- Запорожец едет со скоростью 50км/ч
Задание 7
- а) Поезд прошёл 224 км за 4 часа. Его скорость в 3 раза меньше скорости вертолёта. Какова скорость вертолёта?
- б) Плот проплыл 27 км за 9 ч, а моторная лодка — 24 км за 2 ч. У кого из них скорость больше и на сколько?
Решение
- а) Скорость вертолета 168км/ч. Скорость поезда – 224 : 4 = 56км/ч, скорость вертолета в 3 раза больше поэтому 56 * 3 = 168.
- б) Скорость больше у моторной лодки на 9км/ч. Скорость плота 3км/ч = 27 : 9. Моторной лодки 12км/ч = 24 : 2. Значит 12-3=9.
Задание 8
5 ч 6 мин | 56 мин |
9 мин 20 с | 560 с |
1 сут. 15 ч | 115 ч |
108 мин | 1ч8мин |
734с | 7мин 34 с |
206ч | 2 сут. 6ч |
Решение:
5 ч 6 мин > 56 мин 9 мин 20 с = 560 с 1 сут. 15 ч < 115 ч 108 мин > 1ч8мин 734с > 7мин 34 с 206ч > 2 сут. 6ч
Задание 9
- а) Грузовая машина за 8 ч прошла 280 км, а легковая машина это же расстояние — за 4 ч. Во сколько раз скорость грузовой машины меньше скорости легковой?
- б) Велосипедист за 3 ч проехал 57 км, а мотоциклист за 2 ч проехал на 71 км больше. На сколько километров в час скорость велосипедиста меньше скорости мотоциклиста?
Решение
- a) Сначала узнаем скорость грузовика 280 : 8 = 35км/ч. Затем скорость легковой машины 280 : 4 = 70км/ч. Чтобы узнать во сколько раз скорость грузовой машины меньше чем легковой нужно скорость грузовой разделить на скорость легковой: 70 : 35 = 2. Ответ: В 2 раза.
- б) Сначала узнаем скорость велосипедиста 57 : 3 = 19км/ч. Узнаем сколько проехал мотоциклист 57 + 71 = 128км. Узнаем скорость мотоциклиста 128 : 2 = 64км/ч. Узнаем разницу в скорости велосипедиста и мотоциклиста 64 – 19 = 45км/ч. Ответ: 45км/ч.
Задание 10
Придумай задачу, в которой надо найти скорость по известному расстоянию и времени, и реши её.
Решение Задача:
- Из пункта а вышел поезд. Через 4 часа поезд прибыл в пункт б. Какова скорость поезда если расстояние от пункта а до пункта б 360км.
Решение задачи:- 360 : 4 = 90км/ч. Скорость поезда 90км/ч.
Задание 11
Запиши множество делителей и множество кратных числа 14.
Решение
- Множество делителей: 1, 2, 7, 14.
- Множество кратных: 14, 28, 42, 56, 70, 84, 98, 102, 116, 130, 144, и так до бесконечности.
Задание 12
Реши уравнения с комментированием по компонентам действий:
- а) (40 • х): 10 = 28;
- б) у : 9 – 28 = 32;
- в) 39 + 490 : k = 46;
- г) (25 – а) • 7 = 63.
Решение
- а) Сначала узнаем значение выражения в скобках(40 • х) для этого надо 28 * 10 = 280, вычислем значение x = 280 : 40 = 70. x = 70.
- б) Сначала узнаем значение y : 9 для этого 32 + 28 = 60; узнаем значение y для этого 9 * 60 = 540.
- в) Сначала узнаем значение 490 : k для этого 46 – 39 = 7; что бы узнать значение k нужно 490 : 7 = 70. k = 70.
- г) Сначала узнаем значение выражения в скобках(25-а) для этого 63 : 7 = 9; Вычисляем значение а для этого 25 – 9 = 16. а равно 16.
Задание 13
Выполни сложение и вычитание. Сделай проверку:
- а) 547923 + 83699221;
- б) 483567823 + 998430;
- в) 4758036-50854;
- г) 2666990000 – 89607787.
Решение
- а) 84247144; проверка: 84247144 – 83699221 = 547923.
- б) 484566253; проверка: 484566253 – 483567823 = 998430.
- в) 4707182; проверка: 4707182 + 50854 = 4758036.
- г) 2577382213; проверка: 2577382213 + 89607787 = 2666990000.
Задание 14
По двору ходили гуси. Всего у них было 22 ноги. Подошли 3 утёнка и 4 козлёнка. Сколько ног гуляет теперь по двору?
Три утенка – это еще 6 ног, 4 козленка – это еще 16 ног потому что у козленка 4 ноги 4 * 4 =16. Теперь слаживаем все ноги: 22 + 6 + 16 = 44.
Ответ: 44 ноги гуляло по двору.
На странице использованы задачи и задания из книги Л. Г. Петерсон «Математика. 3 класс. Часть3.» 2008г. Ссылка на сайт автора: www.sch3000.ru
Простые задачи
Составные задачи
Как решать задачи на движение в 4, 5 классе. Скорость сближения.
Автор Admin На чтение 3 мин. Просмотров 6.4k. Обновлено
Схемы задач на движение очень просто нарисовать. Они помогают представить наглядно условие задачи и найти верное решение. В дополнение к схеме в сложных случаях или когда ученик затрудняется с решением рекомендуется рисовать таблицу, где в шапке параметры скорости, времени и расстояния. Об этом подробнее ниже.
Узнайте также, как составить схемы к задачам по математике для 2 класса
Простые задачи на движение
Простые задачи про путников, лыжников, мотоциклистов и другие движущиеся объекты (встречаются даже задачки про черепах) начинают решать еще в начальных классах. Именно на этих примерах удобно разбирать составление схем.
Задача 1. Пешеход вышел из пункта А в пункт Б со скоростью 5 км/ч. Через 3 часа он добрался до пункта Б. Какое расстояние между этими двумя пунктами?
Рисуем схему к задаче: прямая линия, соединяющая точки А и Б — это весь путь. Стрелкой обозначаем направление движения путника. Над стрелкой отмечаем скорость, если известна. Время или расстояние отмечаем под (или над) отрезком:
Если со схемой вы не смогли решить задачу, то предлагаю вам воспользоваться таблицей:
скорость | время | расстояние |
5 км/ч | 3 ч | ? км |
Чтобы решать с помощью таблицы, запомните правила:
- Чтобы найти расстояние, нужно скорость умножить на время: S = V x t
- Чтобы найти скорость, нужно расстояние разделить на время, (это производное из первой формулы:
V = S : t ) - чтобы найти время, необходимо расстояние разделить на скорость. (также просто вывести из первой формулы:
t = S : t
Решение
5 х 3 = 15 км — расстояние между пунктами А и Б
Обратные задачи на движение
Как найти скорость, если известно время и расстояние
Чтобы не путать вас разными условиями задачи состав задачу, обратную первому примеру:
Задача 2. Расстояние между пунктами А и Б равно 15 км. Путник преодолел это расстояние за 3 часа. С какой скоростью шел пешеход?
скорость | время | расстояние |
? км/ч | 3 ч | 15 км |
Решение
15 : 3 = 5 км/ч
Как найти время, когда известны скорость и расстояние
Задача 3. Расстояние между пунктами 15 км. Пешеход шел со скоростью 5 км/ч. За какое время пешеход преодолеет весь путь?
Скорость | время | расстояние |
5 км/ч | ? ч | 15 км |
Решение
15 : 5 = 3 часа
Схемы задач на встречное движение
Чтобы начертить встречное движение, мы рисуем стрелочки из двух пунктов навстречу. Флажком обозначаем место встречи
Когда задачи со встречным или удаляющимся движением — это задачи на общую скорость. Скоро будет подробный урок о них на моем сайте.
Задача 4. Два пешехода вышли одновременно из пунктов А и Б навстречу друг другу. Скорость одного — 5 км/ч, другого — 3 км/ч. Через какое время они встретятся, если известно, что расстояние между пунктами 24 км?
Решение
1 способ:
5 + 3 =8 км/ч — общая скорость
24 : 8 = 3 часа
Задачи на движение в одном направлении
Задача 5. Два пешехода вышли из пунктов А и Б одновременно в одном направлении. Пешеход, который шел впереди, двигался со скоростью 3 км/ч, а второй — со скоростью 5 км/ч. Через какое время второй пешеход догонит первого, если расстояние между пунктами 2 км?
Здесь нужно выяснить скорость сближения. Так как один пешеход шел быстрее второго, то расстояние между ними сокращалось на 2 км/ч (мы посчитали так: 5 — 3 = 2 км/ч). Так как первоначальное расстояние между пунктами 2 км, то найдем время:
2км : 2 км/ч = 1 час.
Через 1 час пешеходы встретятся.
Шпаргалка по решению задач на скорость, время и расстояние
Вы можете воспользоваться данной памяткой при решении этого типа задач. Кликните для просмотра в полном размере и распечатайте, нажав на клавиатуре клавиши CTRL + P.
Рабочие листы скорости, времени и расстояния
Вы здесь: Главная → Рабочие листы → Скорость, время и расстояниеСоздавайте настраиваемые рабочие листы о постоянной (или средней) скорости, времени и расстоянии для курсов предварительной алгебры и алгебры 1 курсов (6–9 классы). Доступны как PDF, так и html форматы. Вы можете выбрать типы текстовых задач на листе, количество задач, метрические или обычные единицы, способ выражения времени (часы / минуты, дробные или десятичные часы) и объем рабочего пространства для каждой задачи.
Существует СЕМЬ различных типов задач со словами, от простых до сложных, так что вы можете создавать самые разные рабочие листы. Семь типов проблем подробно объясняются в реальном генераторе ниже.
Все рабочие листы включают ключ ответа на 2-й странице файла.
Воспользуйтесь быстрыми ссылками ниже, чтобы создать некоторые распространенные типы рабочих листов.
Простая таблица скорости, времени и расстояния 1: Как далеко можно пройти или сколько времени займет поездка – на полчаса или полчаса
Простая таблица скорости, времени и расстояния 2: Как далеко он может уйти, сколько времени занимает поездка или какова средняя скорость – с использованием целых или получасовых часов
Рабочий лист скорости, времени и расстояния 3: Как далеко он может пройти, сколько времени займет поездка или какова средняя скорость – с использованием четверти часа
Рабочий лист скорости, времени и расстояния 4: Как далеко он может пройти, сколько времени займет поездка или какова средняя скорость – время до 5-минутных интервалов
Рабочий лист 5: скорость, время и расстояние: задачи включают преобразование минут в часы.
Найдите среднюю скорость: время дается до четверти часа.
Найдите среднюю скорость: время дается с точностью до двенадцатой части часа.
Найдите среднюю скорость: задачи связаны с преобразованием единицы времени
Скорость, время и расстояние: более сложные задачи 1
Скорость, время и расстояние: более сложные задачи 2
Алгебра реального мира Эдвард Заккаро
Алгебра часто преподается абстрактно, практически без акцента на том, что такое алгебра и как ее можно использовать для решения реальных задач.Подобно тому, как английский можно переводить на другие языки, текстовые задачи можно «переводить» на математический язык алгебры и легко решать. Алгебра реального мира объясняет этот процесс в удобном для понимания формате с использованием мультфильмов и рисунков. Это облегчает самообучение как ученику, так и любому учителю, который никогда не понимал алгебру. Включает главы по алгебре и деньгам, алгебре и геометрии, алгебре и физике, алгебре и рычагам и многому другому. Предназначен для детей 4–9 классов с более высокими математическими способностями и интересами, но может использоваться также учащимися старших классов и взрослыми.Содержит 22 главы с инструкциями и задачами трех уровней сложности.
=> Узнать больше
Таблицы скорости, расстояния и времени
Pacy and fun, наши таблицы скорости, расстояния и времени в формате pdf гарантируют, что у детей 6, 7 и 8 классов есть все необходимое, чтобы оставаться далеко впереди своих сверстников! Пусть они используют данные меры и применяют правильную формулу для получения неизвестной меры. Удерживайте ребенка завороженным с помощью распечаток, которые обязательно помогут ему улучшить навыки, которые побуждают его заполнять таблицы, отвечать на вопросы MCQ, решать задачи со словами и сравнивать скорости.Вступайте и берите штурвал с нашими бесплатными таблицами скорости, времени и расстояния!
В поисках скорости | Уровень 1
Напомните учащимся, что скорость = расстояние / время. Дети должны записать скорости, выбрать правильные альтернативы, отвечая на вопросы MCQ, и заполнить таблицу, выработав недостающие меры.
В поисках скорости | Уровень 2
Умеренно сложный рабочий лист в формате pdf, этот ресурс помогает детям найти скоростной молоток и клещи.Помогите им эффективно разделить расстояние на время и округлить скорость до ближайшего целого числа.
В поисках скорости | Проблемы со словами
Наблюдайте, как ваша практика процветает с шквалом проблем в поиске скорости, с которой человек или объект преодолевают расстояние! Разделите пройденное расстояние на время, необходимое для определения скорости, в этих печатных таблицах.
Определение расстояния | Уровень 1
Студенты знают, что расстояние = скорость x время. У них есть много времени, чтобы понять, как найти дистанцию, работая с кучей легких упражнений.Используйте прилагаемый ключ ответа, чтобы перепроверить решения.
Определение расстояния | Уровень 2
Познакомьте учащихся 7-х и 8-х классов с этими рабочими листами в формате PDF и дайте им возможность решать интригующие упражнения с использованием двузначных и трехзначных скоростей. Этот уровень включает формат времени X часов Y минут.
Определение расстояния | Проблемы со словами
Предложите детям, стремящимся получить больше информации из наших таблиц скорости, расстояния и времени, вычислить расстояние с учетом скорости и времени.Интерактивные и простые, словесные задачи основаны на реальных сценариях.
В поисках времени
Насколько легко найти время, когда известны скорость и расстояние? Проверьте это! Практикуйтесь в поиске времени, используя формулу время = расстояние / скорость, и оставайтесь на голову выше других.
В поисках времени | Проблемы со словами
Пора проверить умение находить время по расстоянию и скорости! Получите массу реалистичных сценариев для расчета затраченного времени.Наши словесные задачи, глоток свежего воздуха, помогают нам понять понятие времени!
Рабочие листы смешанной редакции
Смешайте обучение с азартом с этим разделом таблиц скорости, расстояния и времени! Помогите детям найти одну из трех мер с учетом двух других. Будьте максимально последовательны и правильны.
Смешанная редакция | Проблемы со словами
Эклектичная смесь задач со словами, эти распечатываемые рабочие листы со смешанными исправлениями гарантируют, что учащиеся будут в курсе с самого начала! Прочтите каждую проблему, проанализируйте данные меры и найдите неизвестную.
Сравнение скоростей
Установите для детей 6, 7 и 8 классов увлекательную задачу: решать упражнения и сравнивать скорости! Эти инструменты PDF ориентированы на поиск, кто (человек) или какой (объект) быстрее, учитывая расстояние и время.
Преобразование единиц скорости
Надежный помощник, который делает преобразование скорости – м / с, км / ч и миль / ч – очень простым делом, эти печатные формы изобилуют сочетанием легких и сложных упражнений. Будьте внимательны, продвигаясь вперед!
(15 листов)
по математике, 6 класс, курс, по курсу для определения скорости и расстояния
Кластер: понимание концепций соотношений и использование их рассуждений для решения проблем
Стандарт: понять концепцию единичной ставки a / b, связанной с соотношением a: b, где b 0 (b не равно нулю), и использовать язык ставок в контексте отношения отношения.Например, «В этом рецепте соотношение 3 стакана муки к 4 стаканам сахара, поэтому на каждый стакан сахара приходится 3/4 стакана муки». «Мы заплатили 75 долларов за 15 гамбургеров, что составляет 5 долларов за гамбургер». (Ожидания для удельных ставок в этом классе ограничены несложными дробями.)
Кластер: понимание концепций соотношений и использование их рассуждений для решения проблем
Стандарт: используйте рассуждения о соотношении и скорости для решения реальных и математических задач, e.g., рассуждая о таблицах эквивалентных соотношений, ленточных диаграммах, линейных диаграммах с двойными числами или уравнениях.
Кластер: понимание концепций соотношений и использование их рассуждений для решения проблем
Standard: Решение проблем с удельной стоимостью, включая проблемы, связанные с ценообразованием и постоянной скоростью. Например, если для стрижки 4 газонов потребовалось 7 часов, то при такой скорости, сколько газонов можно было бы косить за 35 часов? С какой скоростью косили газон?
Кластер: понимание концепций соотношений и использование их рассуждений для решения проблем
Стандарт: используйте рассуждение о соотношении для преобразования единиц измерения; соответствующим образом манипулировать и преобразовывать единицы измерения при умножении или делении величин.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем
Индикатор: понять концепцию единичной ставки a / b, связанной с соотношением a: b с b äĘ 0 (b не равно нулю), и использовать язык ставки в контексте отношения отношения. Например: «В этом рецепте соотношение 3 стакана муки к 4 стаканам сахара, поэтому на каждый стакан сахара приходится 3/4 стакана муки.«Мы заплатили 75 долларов за 15 гамбургеров, что составляет 5 долларов за гамбургер». (Ожидаемые расценки для этого сорта ограничены несложными дробями.)
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем
Индикатор: используйте рассуждения о соотношении и скорости для решения реальных и математических задач, например, рассуждая о таблицах эквивалентных соотношений, ленточных диаграммах, линейных диаграммах с двойными числами или уравнениях.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем
Индикатор: Решите проблемы с расценками на единицу продукции, включая проблемы, связанные с установлением цены на единицу продукции и постоянной скоростью. Например, если для стрижки 4 газонов потребовалось 7 часов, то при такой скорости, сколько газонов можно было бы косить за 35 часов? С какой скоростью косили газон?
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем
Индикатор: Используйте рассуждение о соотношении для преобразования единиц измерения; соответствующим образом манипулировать и преобразовывать единицы измерения при умножении или делении величин.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем.
Индикатор: понять концепцию единичной ставки a / b, связанной с соотношением a: b, где b 0, и использовать язык ставки в контексте отношения соотношения.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем.
Индикатор: используйте рассуждения о соотношении и скорости для решения реальных и математических задач.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем.
Индикатор: Решите проблемы с расценками на единицу продукции, включая проблемы, связанные с установлением цены на единицу продукции и постоянной скоростью.
Область обучения: соотношения и пропорциональные отношения
Стандарт: понимание концепций соотношений и использование их рассуждений для решения проблем.
Индикатор: Используйте рассуждение о соотношении для преобразования единиц измерения; преобразуйте единицы измерения соответствующим образом при умножении или делении величин.
Формула времени– Какова формула времени? Примеры
Формула времени помогает вычислить время, необходимое объекту для прохождения определенного расстояния с заданной скоростью. Единица времени в системе СИ – с. Изучим формулу времени на некоторых решенных примерах.
Что такое формула времени?
Формула времени может быть определена как отношение расстояния, пройденного объектом к единице скорости.Время относится к развитию событий. Это движение происходит таким образом, что оно идет от прошлого к настоящему и, наконец, в будущее.
Формула времени
Формула времени данного тела может быть выражена как
Время = Расстояние ÷ Скорость
Как пользоваться формулой времени?
Формула времени может использоваться для определения времени, затрачиваемого объектом, с учетом расстояния и скорости. Давайте быстро рассмотрим пример, показывающий, как использовать формулу для определения времени.
Пример: Сколько будет общего времени, чтобы преодолеть 3600 м со скоростью 2 метра в секунду?
Решение: Использование формулы для времени,
Время = Расстояние ÷ Скорость
Время = 3600 ÷ (2) = 1800 секунд.
Ответ: Общее время преодоления дистанции 3600 м составляет 1800 секунд.
Хотите найти сложные математические решения за секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором для решения сложных вопросов.С Cuemath находите решения простым и легким способом.
Забронируйте бесплатную пробную версию Класс
Примеры использования формулы времени
Решим несколько интересных задач по формуле времени.
Пример 1: Поезд преодолел расстояние 120 км со скоростью 60 км / ч. Используя формулу времени, рассчитайте время, затраченное поездом на преодоление дистанции.
Решение:
Чтобы узнать время, затраченное поездом.
Дано:
Расстояние, пройденное поездом = 120км
Скорость поезда = 60 км / час
Используя формулу времени ,
Время = Расстояние / Скорость
= 120/60
= 2 часа
Ответ: Время, за которое поезд преодолевает 120 км со скоростью 60 км / ч, составляет 2 часа.
Пример 2: Велосипедист преодолевает 20 км со скоростью 5 км / ч. Воспользуйтесь формулой времени и найдите время, затраченное велосипедистом на преодоление дистанции.
Решение:
Чтобы узнать время, затраченное велосипедистом.
Расстояние, пройденное велосипедистом = 20 км
Скорость велосипедиста = 5 км / час.
Используя формулу времени,
Время = Расстояние / Скорость
= 20/5
= 4 часа
Ответ: Время, затрачиваемое велосипедистом на преодоление 20 км со скоростью 5 км / ч, составляет 4 часа.
Пример 3: С помощью формулы времени вычислить время, затрачиваемое человеком на преодоление расстояния 400 километров со скоростью 20 километров в час?
Решение:
Формула времени: [Время = Расстояние ÷ Скорость]
Расстояние = 400 километров
Скорость = 20 км / час
Время = (400 ÷ 20) часов
= 20 часов
Ответ: Таким образом, человек преодолел расстояние 400 километров за 20 часов.
Часто задаваемые вопросы о формуле времени
Как рассчитать расстояние по формуле времени?
Формула для времени задается как [Время = Расстояние ÷ Скорость]. Для расчета расстояния формулу времени можно представить в виде [Расстояние = Скорость × Время].
Как рассчитать скорость по формуле времени?
Формула для времени задается как [Время = Расстояние ÷ Скорость]. Для расчета скорости формула времени будет иметь вид [Скорость = пройденное расстояние ÷ время].
Как использовать формулу для времени?
Формула времени может использоваться в нашей повседневной жизни, чтобы определить, сколько времени требуется для выполнения любой задачи.Чтобы понять, как использовать формулу для времени, давайте рассмотрим пример.
Пример: за сколько времени вы сможете проехать 4000 м со скоростью 20 м / с?
Решение: используя формулу для времени,
Время = Расстояние ÷ Скорость
Время = 4000 ÷ (20) = 200 секунд
Время, необходимое для прохождения дистанции 4000 м со скоростью 20 м / с, составляет 200 секунд.
Какой будет общая формула времени для любой задачи?
Общая формула времени для любой задачи задается как [Время = Расстояние ÷ Скорость].Единица времени в системе СИ – секунды.
Скорость, расстояние и время – промежуточная алгебра
Задачи о расстоянии, скорости и времени – это стандартное приложение линейных уравнений. При решении этих задач используйте соотношение скорость, (скорость или скорость) умножить на , время равно расстоянию .
Например, предположим, что человек должен был проехать 30 км / ч за 4 часа. Чтобы найти общее расстояние, умножьте скорость на время или (30 км / ч) (4 ч) = 120 км.
Задачи, которые здесь предстоит решить, будут состоять на несколько шагов больше, чем описано выше. Поэтому, чтобы систематизировать информацию о проблеме, используйте таблицу. Пример базовой структуры таблицы ниже:
Кто или что | Оценить | Время | Расстояние |
---|---|---|---|
Третий столбец, расстояние, всегда заполняется путем умножения столбцов скорости и времени вместе.Если дано общее расстояние обоих людей или поездок, поместите эту информацию в столбец расстояния. Теперь используйте эту таблицу для настройки и решения следующих примеров.
Джои и Наташа начинают с одной и той же точки и идут в противоположных направлениях. Джои идет на 2 км / ч быстрее Наташи. Через 3 часа их разделяет 30 километров. Как быстро каждый шагал?
Расстояние, пройденное обоими – 30 км. Следовательно, решаемое уравнение:
Это означает, что Наташа ходит со скоростью 4 км / ч, а Джоуи ходит со скоростью 6 км / ч.
Ник и Хлоя покинули лагерь на каноэ и поплыли вниз по течению со средней скоростью 12 км / ч. Они развернулись и поплыли вверх по течению со средней скоростью 4 км / ч. Общая поездка заняла 1 час. Через сколько времени туристы повернули вниз по течению?
Расстояние, пройденное вниз по течению, равно расстоянию, пройденному ими вверх по течению. Следовательно, решаемое уравнение:
Это означает, что туристы плыли вниз по течению 0,25 часа и потратили 0.Гребля назад 75 ч.
Терри выезжает из дома на велосипеде со скоростью 20 км / ч. Салли уезжает через 6 часов на скутере, чтобы догнать его, едущего со скоростью 80 км / ч. Сколько времени ей понадобится, чтобы его догнать?
Расстояние, пройденное обоими, одинаково. Следовательно, решаемое уравнение:
Это означает, что Терри путешествует 8 часов, а Салли нужно всего 2 часа, чтобы его догнать.
Во время 130-километровой поездки автомобиль двигался со средней скоростью 55 км / ч, а затем снизил скорость до 40 км / ч на оставшуюся часть пути.Поездка заняла 2,5 часа. Как долго машина двигалась со скоростью 40 км / ч?
Расстояние, пройденное обоими – 30 км. Следовательно, решаемое уравнение:
Это означает, что время, потраченное на поездку со скоростью 40 км / ч, составило 0,5 часа.
Задачи расстояния, времени и скорости имеют несколько вариаций, в которых смешиваются неизвестные значения расстояния, скорости и времени. Обычно они включают решение проблемы, в которой общее пройденное расстояние равно некоторому расстоянию, или задачу, в которой расстояния, пройденные обеими сторонами, одинаковы.К этим задачам расстояния, скорости и времени мы вернемся позже в этом учебнике, где для их решения потребуются квадратичные решения.
Для вопросов с 1 по 8 найдите уравнения, необходимые для решения проблем. Не решай.
- A находится в 60 километрах от B. Автомобиль в точке A трогается с места для точки B со скоростью 20 км / ч, в то время как автомобиль в точке B трогается с места для точки A со скоростью 25 км / ч. Сколько времени пройдет до встречи автомобилей?
- Два автомобиля находятся на расстоянии 276 километров друг от друга и начинают движение навстречу друг другу одновременно.Они едут со скоростью, различающейся на 5 км / ч. Если они встречаются через 6 часов, узнайте скорость каждого из них.
- Два поезда, отправляющиеся на одной станции, идут в противоположных направлениях. Они едут со скоростью 25 и 40 км / ч соответственно. Если они начнутся одновременно, как скоро они разделятся на 195 километров?
- Два велосипедных посыльных, Джерри и Сьюзен, едут в противоположных направлениях. Если Джерри едет со скоростью 20 км / ч, с какой скоростью должна ехать Сьюзен, если они разделяют 150 километров за 5 часов?
- Пассажирский и грузовой поезд одновременно отправляются навстречу друг другу из двух пунктов, расположенных на расстоянии 300 км.Если скорость пассажирского поезда превышает скорость грузового поезда на 15 км / ч, и они встречаются через 4 часа, какой должна быть скорость каждого?
- Два автомобиля начали движение в противоположных направлениях одновременно из одной и той же точки. Их скорость составляла 25 и 35 км / ч соответственно. Через сколько часов их разделяло 180 километров?
- Человек, имеющий в своем распоряжении десять часов, совершил экскурсию на велосипеде, выехав со скоростью 10 км / ч и вернувшись пешком со скоростью 3 км / ч.Найдите расстояние, которое он проехал.
- Человек идет со скоростью 4 км / ч. Как далеко он может прогуляться за деревню и поехать обратно на троллейбусе, который движется со скоростью 20 км / ч, если ему нужно вернуться домой через 3 часа после того, как он отправился в путь?
Решите вопросы с 9 по 22.
- Мальчик уезжает из дома на автомобиле со скоростью 28 км / ч и ходит обратно со скоростью 4 км / ч. Дорога туда и обратно занимает 2 часа. Как далеко он едет?
- Моторная лодка покидает гавань и движется со средней скоростью 15 км / ч к острову.Средняя скорость на обратном пути составила 10 км / ч. Как далеко находился остров от гавани, если поездка длилась в общей сложности 5 часов?
- Семья ехала на курорт со средней скоростью 30 км / ч, а затем возвращалась по той же дороге со средней скоростью 50 км / ч. Найдите расстояние до курорта, если общее время в пути составило 8 часов.
- В рамках своей летной подготовки пилот-студент должен был вылететь в аэропорт, а затем вернуться. Средняя скорость до аэропорта составляла 90 км / ч, а средняя скорость возврата – 120 км / ч.Найдите расстояние между двумя аэропортами, если общее время полета составило 7 часов.
- Сэм начинает движение со скоростью 4 км / ч от кемпинга на 2 часа раньше Сью, которая движется со скоростью 6 км / ч в том же направлении. Сколько часов потребуется Сью, чтобы догнать Сэма?
- Человек едет 5 км / ч. После 6 часов путешествия другой человек стартует с того же места, что и первый, двигаясь со скоростью 8 км / ч. Когда второй догонит первого?
- Моторная лодка покидает гавань и движется со средней скоростью 8 км / ч к небольшому острову.Два часа спустя круизный лайнер с каютами покидает ту же гавань и движется со средней скоростью 16 км / ч к тому же острову. Через сколько часов после отбытия круизера с каютами он будет рядом с моторной лодкой?
- Бегун на длинные дистанции начал дистанцию со средней скоростью 6 км / ч. Через час второй бегун начал тот же курс со средней скоростью 8 км / ч. Через какое время после старта второго бегуна они догонят первого бегуна?
- Двое мужчин едут в противоположных направлениях со скоростью 20 и 30 км / ч одновременно и из одного места.Через сколько часов они будут в 300 км друг от друга?
- Два поезда одновременно отправляются из одного и того же места и едут в противоположных направлениях. Если скорость одного из них на 6 км / ч больше, чем у другого, и по прошествии 4 часов расстояние между ними составляет 168 километров, какова скорость каждого из них?
- Два велосипедиста стартуют с одной и той же точки и едут в противоположных направлениях. Один велосипедист едет вдвое быстрее другого. Через три часа их разделяет 72 километра. Найдите рейтинг каждого велосипедиста.
- Два маленьких самолета стартуют из одной точки и летят в противоположных направлениях. Первый самолет летит на 25 км / ч медленнее второго. За два часа самолеты разделяют 430 километров. Найдите скорость каждого самолета.
- Во время 130-километровой поездки автомобиль двигался со средней скоростью 55 км / ч, а затем снизил скорость до 40 км / ч на оставшуюся часть пути. Поездка заняла 2,5 часа. Как долго машина двигалась со скоростью 40 км / ч?
- Бегая со средней скоростью 8 м / с, спринтер бежал до конца трассы, а затем возвращался к исходной точке со средней скоростью 3 м / с.Спринтеру потребовалось 55 секунд, чтобы пробежать до конца трассы и вернуться обратно. Найдите длину дорожки.
Ключ ответа 8,8
Скорость, расстояние и время – третий / четвертый уровень | Счисления и математика | Ресурсы для практиков | Scotland Learns
Цель деятельности
Понимание и применение связей между математическими понятиями – важный навык, который необходимо развивать в математике и арифметике. Поощрение молодых людей к размышлению о связи между скоростью, расстоянием и временем поможет им развить этот навык.Важным навыком будет для них делиться своими идеями и мыслями с кем-то дома. Это может быть взрослый или старший брат или сестра.
Учебный план повышения квалификации (CfE) уровни: Третий уровень
- Используя простые периоды времени, я могу вычислить, сколько времени займет путешествие, пройденная скорость или пройденное расстояние, используя свои знания о связи между временем, скоростью и расстоянием. (MTH 3-10a)
Учебная деятельность
При разработке учебных мероприятий подумайте о круге учащихся в вашем классе и их индивидуальных обстоятельствах.Рассмотрим следующее учебное задание, которое можно адаптировать для ваших учащихся:
Вот полезное напоминание о скорости, расстоянии и времени.
Это задание попросит учащихся исследовать время, которое требуется свету, чтобы пройти от Солнца до каждой из планет нашей солнечной системы. Для этого им потребуется калькулятор. Для облегчения расчетов расстояния, скорости и время округлены. Примечание: мс -1 означает метры в секунду.
Часть 1
- Возьмем скорость света 300000000 мс -1 .
- Расстояние от Солнца до Земли 149 600 000 км.
- Сколько времени нужно, чтобы свет, покидающий Солнце, достиг Земли? Дайте ответ, округленный до ближайшей минуты.
Часть 2
- Сколько времени требуется солнечному свету, чтобы достичь других планет в нашей солнечной системе? Вам нужно будет выбрать наиболее подходящие единицы времени для каждого из ваших ответов.
- Вы можете попросить своих молодых людей заполнить эту таблицу:
Планета | Расстояние до Солнца в километрах (км) | Время |
Меркурий | 57 900 000 | |
Венера | 108 200 000 | |
Земля | 149 600 000 | |
Марс | 227 900 000 | |
Юпитер | 778 600 000 | |
Сатурн | 1 433 500 000 | |
Уран | 2 872 500 000 | |
Нептун | 4 495 100 000 | |
Плутон | 5 906 400 000 |
Источник: https: // nssdc.gsfc.nasa.gov/planetary/factsheet/index.html
Часть 3
- Скорость света ближе к 299792458 мс -1 . Объясните, как это изменит ваше время, рассчитанное в части 1 и части 2.
Часть 4
- Если свету требуется 1,275 секунды, чтобы добраться от Земли до Луны, как далеко он находится от Земли до Луны в километрах? Возьмем скорость света 300000000 мс -1 .
Часть 5 – Расширение (требуется знание научных обозначений)
- Световой год – это мера того, как далеко свет проходит за один год.Подсчитайте, как далеко уходит свет за год, с точностью до ближайшего километра.
Национальные ориентиры
В зависимости от индивидуальной стадии развития молодых людей и их предыдущего обучения они будут работать над этими национальными ориентирами к концу третьего уровня.
Третий уровень
- Прикладные знания о взаимосвязи между скоростью, расстоянием и временем для определения каждой из трех переменных.
Возможный подход к оценке обучения
Получение примеров домашнего обучения от молодых людей поможет вам понять, как они справляются с поставленными вами задачами, и предоставит некоторую обратную связь.Независимо от того, какие подходы ваша школа использует для общения с молодыми людьми, некоторые из следующих могут быть полезны, чтобы помочь вам оценить и отметить их успехи:
- Молодые люди могут захотеть загрузить фотографии, видео или комментарии в свой учебный онлайн-дневник. В этом случае вы можете побудить их поделиться своими мыслями или решениями.
- Вы можете побудить молодых людей рассказать, как они пришли к этой задаче. Насколько легко им это удалось? Было ли что-нибудь, что им мешало?
- В зависимости от вашей платформы для домашнего обучения у молодых людей могут быть возможности обсуждать и сотрудничать в решении этой задачи.
2.2 Скорость и скорость – физика
Задачи обучения разделу
К концу этого раздела вы сможете делать следующее:
- Вычислить среднюю скорость объекта
- Связать смещение и среднюю скорость
Поддержка учителей
Поддержка учителей
Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:
- (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
- (B) описывают и анализируют движение в одном измерении, используя уравнения с понятиями расстояния, смещения, скорости, средней скорости, мгновенной скорости и ускорения.
Кроме того, Руководство лаборатории по физике для старших классов рассматривает содержание этого раздела лаборатории под названием «Положение и скорость объекта», а также следующие стандарты:
- (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
- (В) описывать и анализировать движение в одном измерении, используя уравнения с понятиями расстояния, смещения, скорости, средней скорости, мгновенной скорости и ускорения.
Раздел Основные термины
средняя скорость | средняя скорость | мгновенная скорость |
мгновенная скорость | скорость | скорость |
Поддержка учителя
Поддержка учителя
В этом разделе учащиеся применяют то, что они узнали о расстоянии и смещении, к понятиям скорости и скорости.
[BL] [OL] Перед тем, как студенты прочитают раздел, попросите их привести примеры того, как они слышали слово «скорость». Затем спросите их, слышали ли они слово «скорость». Объясните, что в повседневной жизни эти слова часто используются как синонимы, но их научные определения различаются. Скажите студентам, что они узнают об этих различиях по мере чтения раздела.
[AL] Объясните учащимся, что скорость, как и смещение, является векторной величиной. Попросите их поразмышлять о том, чем скорость отличается от скорости.После того, как они поделятся своими идеями, задайте вопросы, которые углубят их мыслительный процесс, например: Почему вы так думаете? Какой пример? Как можно применить эти термины к движению, которое вы видите каждый день?
Скорость
Движение – это нечто большее, чем расстояние и смещение. Такие вопросы, как: «Сколько времени занимает пешая гонка?» и “Какая была скорость бегуна?” невозможно ответить без понимания других концепций. В этом разделе мы рассмотрим время, скорость и скорость, чтобы расширить наше понимание движения.
Описание того, насколько быстро или медленно движется объект, – это его скорость. Скорость – это скорость, с которой объект меняет свое местоположение. Как и расстояние, скорость является скаляром, потому что у нее есть величина, но не направление. Поскольку скорость – это показатель, она зависит от временного интервала движения. Вы можете рассчитать прошедшее время или изменение времени ΔtΔt движения как разницу между временем окончания и временем начала
Единицей времени в системе СИ является секунда (с), а единицей скорости в системе СИ являются метры в секунду (м / с), но иногда – километры в час (км / ч), мили в час (миль / ч) или другие единицы измерения. скорость используются.
Когда вы описываете скорость объекта, вы часто описываете среднее значение за определенный период времени. Средняя скорость, v avg , представляет собой пройденное расстояние, деленное на время, в течение которого происходит движение.
vavg = distancetimevavg = distancetimeКонечно, вы можете изменить уравнение, чтобы найти расстояние или время
. время = distancevavg.time = distancevavg. distance = vavg × timedistance = vavg × timeПредположим, например, что автомобиль проезжает 150 километров за 3 секунды.2 часа. Его средняя скорость за поездку
vavg = расстояние-время = 150 км3,2 ч = 47 км / ч. vavg = расстояние-время = 150 км3,2 ч = 47 км / ч.Скорость автомобиля, вероятно, увеличится и уменьшится во много раз за 3,2 часа поездки. Однако его скорость в определенный момент времени – это его мгновенная скорость. Спидометр автомобиля показывает его мгновенную скорость.
Поддержка учителей
Поддержка учителей
[OL] [AL] Предупредите учащихся, что средняя скорость не всегда равна средней начальной и конечной скорости объекта.Например, предположим, что автомобиль проезжает 100 км. Первые 50 км он движется со скоростью 30 км / ч, а вторые 50 км – со скоростью 60 км / ч. Его средняя скорость будет составлять расстояние / (временной интервал) = (100 км) / [(50 км) / (30 км / ч) + (50 км) / (60 км / ч)] = 40 км / ч. Если бы автомобиль на этих скоростях проехал равное время на 30 и 60 км, а не на равные расстояния, его средняя скорость составила бы 45 км / ч.
[BL] [OL] Предупредите учащихся, что термины «скорость», «средняя скорость» и «мгновенная скорость» на повседневном языке часто называют просто скоростью.Подчеркните важность в науке использования правильной терминологии, чтобы избежать путаницы и правильно передавать идеи.
Рисунок 2.8 За 30 минут до магазина туда и обратно общее расстояние составляет 6 км. Средняя скорость 12 км / ч. Смещение для обхода равно нулю, потому что нет чистого изменения положения.
Рабочий пример
Расчет средней скорости
Мрамор катится 5,2 м за 1,8 с. Какая была средняя скорость мрамора?
Стратегия
Мы знаем расстояние, которое проходит мрамор, 5.2 м, интервал времени 1,8 с. Мы можем использовать эти значения в уравнении средней скорости.
Решение
vavg = расстояние время = 5,2 м 1,8 с = 2,9 м / с vavg = расстояние время = 5,2 м 1,8 с = 2,9 м / сОбсуждение
Средняя скорость – это скаляр, поэтому мы не включаем направление в ответ. Мы можем проверить разумность ответа, оценив: 5 метров разделить на 2 секунды – это 2,5 м / с. Поскольку 2,5 м / с близко к 2,9 м / с, ответ разумный. Речь идет о скорости быстрой ходьбы, так что это тоже имеет смысл.
Практические задачи
8.Питчер перебрасывает бейсбольный мяч от насыпи питчера к своей тарелке за 0,46 с. Дистанция 18,4 м. Какая была средняя скорость бейсбольного мяча?
- 40 м / с
- -40 м / с
- 0,03 м / с
- 8,5 м / с
Кэсси шла к дому своей подруги со средней скоростью 1,40 м / с. Расстояние между домами 205 м. Как долго она продолжала путешествие?
- 146 с
- 0.01 с
- 2,50 мин.
- 287 с
Скорость
Векторная версия скорости – это скорость. Скорость описывает скорость и направление объекта. Как и в случае со скоростью, полезно описывать либо среднюю скорость за период времени, либо скорость в конкретный момент. Средняя скорость – это смещение, деленное на время, в течение которого смещение происходит.
vavg = время смещения = ΔdΔt = df − d0tf − t0vavg = время смещения = ΔdΔt = df − d0tf − t0Скорость, как и скорость, выражается в единицах СИ в метрах в секунду (м / с), но поскольку это вектор, вы также должны включить направление.Кроме того, переменная v для скорости выделена жирным шрифтом, потому что это вектор, в отличие от переменной v для скорости, которая выделена курсивом, потому что это скалярная величина.
Советы для успеха
Важно помнить, что средняя скорость – это не то же самое, что средняя скорость без направления. Как мы видели в предыдущем разделе со смещением и расстоянием, изменение направления во временном интервале больше влияет на скорость и скорость.
Предположим, что пассажир двигался к задней части самолета со средней скоростью –4 м / с. Мы не можем сказать по средней скорости, остановился ли пассажир на мгновение или отступил, прежде чем он добрался до задней части самолета. Чтобы получить больше деталей, мы должны рассмотреть меньшие сегменты поездки за меньшие промежутки времени, такие как те, что показаны на рисунке 2.9. Если вы рассматриваете бесконечно малые интервалы, вы можете определить мгновенную скорость, которая является скоростью в определенный момент времени.Мгновенная скорость и средняя скорость одинаковы, если скорость постоянна.
Рис. 2.9. На диаграмме представлена более подробная запись пассажира самолета, направляющегося к задней части самолета, показаны более мелкие отрезки его поездки.
Ранее вы читали, что пройденное расстояние может отличаться от величины смещения. Точно так же скорость может отличаться от величины скорости. Например, вы едете в магазин и через полчаса возвращаетесь домой.Если одометр вашего автомобиля показывает, что общее пройденное расстояние составило 6 км, то ваша средняя скорость составила 12 км / ч. Однако ваша средняя скорость была равна нулю, потому что ваше смещение в оба конца равно нулю.
Watch Physics
Расчет средней скорости или скорости
В этом видео рассматриваются векторы и скаляры и описывается, как рассчитать среднюю скорость и среднюю скорость, когда вы знаете смещение и изменение во времени. В видео также рассказывается, как преобразовать км / ч в м / с.
Захват
Что из следующего полностью описывает вектор и скалярную величину и правильно дает пример каждого из них?
- Скалярная величина полностью описывается своей величиной, в то время как вектор нуждается как в величине, так и в направлении, чтобы полностью описать его.Смещение – это пример скалярной величины, а время – пример векторной величины.
- Скалярная величина полностью описывается своей величиной, в то время как вектор нуждается как в величине, так и в направлении, чтобы полностью описать его. Время – это пример скалярной величины, а смещение – пример векторной величины.
- Скалярная величина полностью описывается своей величиной и направлением, тогда как вектору нужна только величина, чтобы полностью описать его.Смещение – это пример скалярной величины, а время – пример векторной величины.
- Скалярная величина полностью описывается своей величиной и направлением, тогда как вектору нужна только величина, чтобы полностью описать его. Время – это пример скалярной величины, а смещение – пример векторной величины.
Поддержка учителей
Поддержка учителей
Это видео хорошо подчеркивает разницу между векторами и скалярами.Студент знакомится с идеей использования «s» для обозначения смещения, которое вы можете поощрять, а можете и не поощрять. Прежде чем ученики посмотрят видео, укажите, что преподаватель использует s → s → для смещения вместо d, как в этом тексте. Объясните, что использование маленьких стрелок над переменными является обычным способом обозначения векторов в курсах физики более высокого уровня. Предупредите учащихся, что в этом видео не используются общепринятые сокращения для часа и секунды. Напомните учащимся, что в своей работе они должны использовать сокращения h для часа и s для секунд.
Рабочий пример
Расчет средней скорости
Студент перемещается на 304 м к северу за 180 с. Какая была средняя скорость ученика?
Стратегия
Мы знаем, что смещение составляет 304 м к северу, а время – 180 с. Мы можем использовать формулу для средней скорости, чтобы решить задачу.
Решение
vavg = ΔdΔt = 304 м180 с = 1,7 м / с на север vavg = ΔdΔt = 304 м180 с = 1,7 м / с на север2,1
Обсуждение
Поскольку средняя скорость является векторной величиной, вы должны включить в ответ направление и величину.Обратите внимание, однако, что направление можно не указывать до конца, чтобы не загромождать проблему. Обратите внимание на значащие цифры в задаче. Расстояние 304 м состоит из трех значащих цифр, а временной интервал 180 с – только двух, поэтому частное должно состоять только из двух значащих цифр.
Советы для успеха
Обратите внимание на способ представления скаляров и векторов. В этой книге d обозначает расстояние и перемещение. Точно так же v обозначает скорость, а v обозначает скорость.Переменная, не выделенная жирным шрифтом, указывает на скалярную величину, а переменная, выделенная жирным шрифтом, указывает на векторную величину. Иногда векторы представлены маленькими стрелками над переменной.
Поддержка учителей
Поддержка учителей
Используйте эту задачу, чтобы подчеркнуть важность использования правильного количества значащих цифр в вычислениях. Некоторые студенты имеют тенденцию включать много цифр в свои окончательные вычисления. Они ошибочно полагают, что повышают точность своего ответа, записывая многие цифры, указанные на калькуляторе.Обратите внимание на то, что это приведет к ошибкам в расчетах. В более сложных расчетах эти ошибки могут распространяться и приводить к неправильному окончательному ответу. Вместо этого напомните учащимся всегда носить с собой одну или две дополнительные цифры в промежуточных вычислениях и округлять окончательный ответ до правильного количества значащих цифр.
Рабочий пример
Решение для смещения, когда известны средняя скорость и время
Лейла бегает трусцой со средней скоростью 2.4 м / с на восток. Каково ее смещение через 46 секунд?
Стратегия
Мы знаем, что средняя скорость Лейлы составляет 2,4 м / с на восток, а временной интервал составляет 46 секунд. Мы можем изменить формулу средней скорости, чтобы найти смещение.
Решение
vavg = ΔdΔtΔd = vavgΔt = (2,4 м / с) (46 с) = 1,1 × 102 м на восток vavg = ΔdΔtΔd = vavgΔt = (2,4 м / с) (46 с) = 1,1 × 102 м на восток2,2
Обсуждение
Ответ: примерно в 110 м к востоку, что является разумным смещением для чуть менее минуты бега трусцой.Калькулятор показывает ответ как 110,4 м. Мы решили написать ответ, используя научную нотацию, потому что мы хотели прояснить, что мы использовали только две значащие цифры.
Советы для успеха
Размерный анализ – хороший способ определить, правильно ли вы решили проблему. Запишите расчет, используя только единицы измерения, чтобы убедиться, что они совпадают на противоположных сторонах отметки равенства. В рассмотренном примере у вас
м = (м / с) (с). Поскольку секунды находятся в знаменателе средней скорости и в числителе времени, единица вычитает, оставляя только m и, конечно же, m = m.
Рабочий пример
Решение для времени, когда известны смещение и средняя скорость
Филипп идет по прямой дорожке от своего дома до школы. Сколько времени ему потребуется, чтобы добраться до школы, если он пройдет 428 м на запад со средней скоростью 1,7 м / с на запад?
Стратегия
Мы знаем, что смещение Филиппа составляет 428 м к западу, а его средняя скорость составляет 1,7 м / с к западу. Мы можем рассчитать время, необходимое для поездки, переписав уравнение средней скорости.
Решение
vavg = ΔdΔtΔt = Δdvavg = 428 м 1,7 м / с = 2,5 × 102 svavg = ΔdΔtΔt = Δdvavg = 428 м 1,7 м / с = 2,5 × 102 с2,3
Обсуждение
Здесь нам снова пришлось использовать научную запись, потому что ответ мог состоять только из двух значащих цифр. Поскольку время является скаляром, ответ включает только величину, а не направление.
Практические задачи
10.Дальнобойщик проезжает по прямой трассе 0,25 ч со смещением 16 км к югу.Какова средняя скорость дальнобойщика?
- 4 км / ч север
- 4 км / ч юг
- 64 км / ч север
- 64 км / ч юг
Птица летит со средней скоростью 7,5 м / с на восток от ветки к ветке за 2,4 с. Затем он делает паузу перед полетом со средней скоростью 6,8 м / с на восток в течение 3,5 с к другому ответвлению. Каково полное смещение птицы от начальной точки?
- 42 м к западу
- 6 м к западу
- 6 м на восток
- 42 м на восток
Virtual Physics
The Walking Man
В этом симуляторе вы наведете курсор на человека и переместите его сначала в одном направлении, а затем в противоположном.Не отключайте вкладку Introduction . Вы можете использовать вкладку Charts после того, как узнаете о графическом движении позже в этой главе. Внимательно следите за знаком чисел в полях положения и скорости. Пока не обращайте внимания на поле ускорения. Посмотрите, сможете ли вы сделать положение человека положительным, а скорость – отрицательным. Затем посмотрите, сможете ли вы сделать обратное.
Захват
Какая ситуация правильно описывает, когда положение движущегося человека было отрицательным, но его скорость была положительной?
- Человек движется к 0 слева от 0
- Человек движется к 0 справа от 0
- Мужчина удаляется от 0 слева от 0
- Человек движется от 0 справа от 0
Поддержка учителя
Поддержка учителя
Это мощная интерактивная анимация, которую можно использовать для многих уроков.На этом этапе его можно использовать, чтобы показать, что смещение может быть как положительным, так и отрицательным. Он также может показать, что при отрицательном смещении скорость может быть как положительной, так и отрицательной. Позже с его помощью можно будет показать, что скорость и ускорение могут иметь разные знаки. Настоятельно рекомендуется оставить учащихся на вкладке Введение . Вкладку Charts можно использовать после того, как студенты узнают о графическом движении позже в этой главе.
Проверьте свое понимание
12.Два бегуна, идущие по одной прямой, начинают и заканчивают свой бег одновременно. На полпути у них разные мгновенные скорости. Могут ли их средние скорости на протяжении всей поездки быть одинаковыми?
- Да, потому что средняя скорость зависит от чистого или полного смещения.
- Да, потому что средняя скорость зависит от общего пройденного расстояния.
- Нет, потому что скорости обоих бегунов должны оставаться одинаковыми на протяжении всего пути.
- Нет, потому что мгновенные скорости бегунов должны оставаться такими же в средней точке, но могут изменяться в других точках.
Если вы разделите общее расстояние, пройденное за поездку на автомобиле (определенное одометром), на время поездки, вычисляете ли вы среднюю скорость или величину средней скорости, и при каких обстоятельствах эти две величины одинаковы? ?
- Средняя скорость. Оба они одинаковы, когда автомобиль движется с постоянной скоростью и меняет направление.
- Средняя скорость. Оба они одинаковы, когда скорость постоянна и автомобиль не меняет своего направления.
- Величина средней скорости. Оба варианта одинаковы, когда автомобиль движется с постоянной скоростью.
- Величина средней скорости. И то, и другое одинаково, когда машина не меняет своего направления.
Может ли средняя скорость быть отрицательной?
- Да, если чистое смещение отрицательное.
- Да, если направление объекта меняется во время движения.
- Нет, потому что средняя скорость описывает только величину, а не направление движения.
- Нет, потому что средняя скорость описывает только величину в положительном направлении движения.
Поддержка учителей
Поддержка учителей
Используйте вопросы «Проверьте свое понимание », чтобы оценить достижение учащимися учебных целей по разделам. Если учащиеся не справляются с какой-либо конкретной целью, «Проверьте свое понимание» поможет определить, кто из них и направит их к соответствующему содержанию.Пункты оценивания в TUTOR позволят вам переоценить.