Разное

Примеры деление в столбик 3 класс примеры для тренировки: Карточки по математике “Умножение и деление трехзначных чисел на однозначное” с ответами | Тренажёр по математике (3 класс) по теме:

Содержание

3 класс - деление, примеры и задачи на деление чисел и проверка.

Дата публикации: .

Задачи на тему: "Принципы, свойства и проверка результатов деления"



Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Скачать: Деление двузначного числа на однозначное (PDF)

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 3 класса
Л.Г.Петерсон     М.И.Моро     Т.Е.Демидовой



Деление двухзначного числа на однозначное

1. Реши примеры.

21 : 7 = 27 : 9 = 32 : 4 =
45 : 9 = 49 : 7 = 56 : 8 =
36 : 6 = 64 : 8 = 63 : 3 =
35 : 5 = 42 : 6 = 25 : 5 =
36 : 9 = 27 : 3 = 72 : 8 =
18 : 3 = 36 : 3 = 91 : 7 =
15 : 5 = 10 : 10 = 10 : 2 =
81 : 9 = 9 : 3 = 50 : 10 =

2. Выполни деление и проверь результат умножением.

12 : 2 = 24 : 6 = 14 : 7 =
20 : 2 = 60 : 4 = 40 : 5 =

3. Реши примеры, правильно выполняя последовательность действий.

72 : 8 + 22 * 4 - 28 : 4 =
36 - 81 : 9 + 12 : 6 * 7 =
17 + 7 * 5 - 48 : 4 =
90 : 3 - 24 + 11 * 5 =

4. Составь числовые выражения, содержащие операцию деления, и реши их.

4.1. Используй числа: 5, 9, 12, 17, 34, 58.
4.2. Используй числа: 6, 12, 16, 18, 24, 32.

5. Запиши заданные предложения в виде числовых выражений и реши их.

3.1. К числу 27 прибавь частное чисел 64 и 8.
3.2. К числу 43 прибавь частное чисел 33 и 3.
3.3. Из числа 36 вычти частное чисел 45 и 9.
3.3. Из числа 89 вычти частное чисел 72 и 8.

Решение текстовых задач на деление

1. Необходимо разложить 56 кг пряников в 8 пакетов. Сколько кг поместится в один пакет?

2. Рабочие построили 3 метра стены. Для этого им потребовалось 63 кирпича. Сколько кирпичей необходимо для строительства 1 метра стены?

3. На новый год 3 классу раздали 99 конфет. Сколько конфет досталось каждому ученику, если в классе учится 11 детей?

4. Ваня, Сережа и Маша сорвали с яблони 27 яблок. Можно ли разделить яблоки поровну между ребятами? Сколько яблок будет у каждого? Сколько еще яблок надо сорвать, чтобы у каждого было по 14 яблок?



Урок 66. приём письменного деления на однозначное число - Математика - 3 класс

Математика

3 класс

Урок № 66

Приём письменного деления на однозначное число

Перечень вопросов, рассматриваемых в теме:

Как выполняется письменное деление на однозначное число?

Как применяется алгоритм деления трёхзначного числа на однозначное?

Тезаурус

Каждая цифра в записи многозначного числа занимает определённое место – позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:
- единицы называют единицами 1-го разряда;
- десятки называют единицами 2-го разряда;
- сотни называют единицами 3-го разряда и т. д.

Деление (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению.

Деление - это такая операция, в результате которой получается число (частное), которое приумножении на делитель даёт делимое.

Основная и дополнительная литература:

1. Моро М. И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 92-94.

2. Волкова С. И. Математика. Проверочные работы. 3 кл. — М.: Просвещение, 2018. С. 84-85.

3. Рудницкая В. Н. Математика. Дидактические материалы.Ч.1 3 кл. – М. «Вентана- Граф», 2016, с. 23-24.

Теоретический материал для самостоятельного изучения

Сегодня мы займёмся делением.

Вам предстоит научиться выполнять деление трёхзначных чисел в столбик.

Вы справитесь с этим без проблем, если хорошо знаете таблицу умножения.

Три математических действия - сложение, вычитание и умножение в столбик вы уже умеете выполнять. Осталось одно, но самое сложное. Помните, чем сложнее – тем интереснее!

Деленье нам служит на деле, 
Оно нам поможет всегда. 
Кто поровну трудности делит, 
Разделит успехи труда. 

Мы уже выяснили, что невозможно быстро и точно делить без знания таблицы умножения.

Но не только.

Надо ещё хорошо знать компоненты деления и взаимосвязь между ними, быстро и точно выполнять вычитание и конечно уметь работать с разрядами.

Вспомним компоненты деления: число, которое делим – делимое, число на которое делим – делитель, результат деления – значение частного.

В тех случаях, когда деление выполнить устно сложно, выручает умение делить в столбик, или уголком.

Это название придумали не случайно. Привычный знак деления заменён на уголок.

Записываем делимое, рядом чертим уголок. В верхнем углу записываем делитель, а в нижний угол вписываем цифры частного.

Обратите внимание, цифры делимого и частного имеют названия в зависимости от разряда, который обозначают.

Кроме этого, делимое придётся раскладывать на неполные делимые – первое, второе, третье. Это те числа, которые делим на делитель, пока не разделим всё число.

Рассмотрим пример 938 : 7

Шаг 1

Записываем числа, разделив их «уголком».

Шаг 2

Сколько раз число 7 может содержаться в числе 9? Правильно, только один раз. Поэтому первым записанными нами результатом будет 1.

Шаг 3

Умножаем делитель 7 ∙ 1 и получаем 7. Полученный результат записываем под первым числом нашего делимого 938 и вычитаем, как обычно, в столбик. То есть из 9 мы вычитаем 7 и получаем 2. Записываем результат.

Шаг 4

Число, которое мы видим, меньше делителя, поэтому его надо увеличить. Для этого объединим его со следующим неиспользованным числом нашего делимого – это будет 3. Приписываем 3 к полученному числу 2.

Шаг 5 

Анализируем, сколько раз наш делитель 7 содержится в полученном числе 23? Правильно, три раза. Фиксируем число 3 в частном. А результат произведения – 21 (7 ∙ 3) записываем внизу под числом 23 в столбик.

Шаг 6 

Теперь осталось найти последнее число нашего частного. Используя уже знакомый алгоритм, продолжаем делать вычисления в столбике.  Путём вычитания в столбике (23 - 21) получаем разницу. Она равняется 2.

Из делимого у нас осталось неиспользованным одно число – 8. Объединяем его с полученным в результате вычитания числом 2, получаем – 28.

Шаг 7

Анализируем, сколько раз наш делитель 7 содержится в полученном числе? Правильно, 4 раза. Записываем полученную цифру в результат. Итак, мы полученное в результате деления столбиком частное = 134.

Рассмотрим ещё деление в столбик на примере 512 : 8.

1 шаг. Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг. Деление начинаем слева направо. Сначала берем цифру 5

3 шаг. Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг. Ставим точку под делителем.

5 шаг. После 51 стоит еще цифра 2, а значит, в ответе будет ещё одно число, то есть, частное – двузначное число. Ставим вторую точку:

6 шаг. Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг. Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг. Затем из 51 вычитаем 48 и получаем ответ 3.

9 шаг. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Ответ: 64

Как и в остальных случаях выполнения письменных приёмов вычислений, при делении очень важно не отступать от алгоритма.

Запомните:

Когда число цифр разряда меньше делителя, надо добавить к нему число цифр следующего разряда.

Если при делении неполного делимого остался остаток, спускаем его под черту и к нему приписываем цифру следующего разряда.

Остаток не может быть больше делителя!

Если цифра неполного делимого меньше делителя, то в частном пишем 0.

Вы сегодня получили ключ к успеху в математике. Смело открывайте им замки любой сложности.

Задания тренировочного модуля:

Укажите правильно выполненное деление в столбик.

Правильный ответ:

Заполните пустые ячейки таблицы.

Правильный вариант:

Как объяснить ребенку деление и умножение чисел

Искусство учиться

Как объяснить ребенку деление и умножение чисел

3 апреля 2018 57 772 просмотра


Лиана Хазиахметова

Далеко не все дети понимают деление и умножение с первого раза, поэтому родителям приходится дома подробнее разбирать эти процессы. Сегодня расскажем, как это сделать проще для ребенка. В книге «Как объяснить ребенку математику» объяснения строятся на визуальных принципах. Так школьнику будет понятнее, а родителю легче построить общение.

Умножение чисел

При умножении второе число показывает, сколько раз нужно сложить первое число с самим собой. На рисунке ниже в каждой шеренге стоят 13 человек, а всего шеренг 9. Чтобы подсчитать общее количество людей, нужно число 13 сложить само с собой 9 раз. Это и будет произведением чисел 13 на 9.


Иллюстрация из книги «Как объяснить ребенку математику»

Количество людей в шеренге (13) умножается на количество шеренг (9). Общее количество людей равно 117.

Не имеет значения, в каком порядке перемножаются числа: ответ будет одинаковым. Ниже показаны два способа, как можно вычислить произведение.

Некоторые числа легко умножать, зная особые приемы. Вот они.


Таблица из книги «Как объяснить ребенку математику»

В таблице показаны приемы быстрого умножения на 2, 5, 6, 9, 12 и 20.

Деление чисел

Деление позволяет найти, сколько раз одно число содержится в другом. Процесс деления можно представить, например, так: если 10 монет раздать 2 людям, то каждый получит по 5 монет. Или так: 10 монет, разложенные в стопки по 2 монеты, дадут 5 стопок.

Деление одного числа (делимого) на другое (делитель) показывает, сколько делителей содержится в делимом. Например, при делении 10 на 2 мы находим, сколько чисел 2 содержится в числе 10. Результат деления называется частным.



Деление как распределение. Из книги «Как объяснить ребенку математику»

Распределение чего-либо — это, по сути, операция деления. Так, если поровну распределить четыре конфеты между двумя людьми, у каждого из них будет по две конфеты.

Деление и умножение лучше рассматривать параллельно, чтобы ребенок увидел взаимосвязь. В книге «Как объяснить ребенку математику» есть объяснения более сложных операций, например, деления с остатком, умножения в столбик и так далее. Если визуально показать, как это делается, ребенку легче будет усвоить материал.

Рабочие тетради на деление и умножение

Если ваш ребенок освоил азы деления и умножения, то сейчас ему нужна практика. Японская система Kumon предлагает рабочие тетради «Математика. Деление. Уровень 4»

и «Математика. Умножение. Уровень 4». Постепенно, решая все более сложные задачи, ребенок научится работать с большими цифрами. Ниже — пример одного из последних заданий тетради с делениями.


Пример из тетради «Математика. Деление. Уровень 4»

Такие примеры ребенок научится решать легко и быстро, если тренироваться регулярно и по принципу от простого к сложному. Задания нужно усложнять постепенно, тогда школьник будет учиться с чувством «я могу!».

По материалам книги «Как объяснить ребенку математику», рабочих тетрадей «Математика. Деление. Уровень 4» и «Математика. Умножение. Уровень 4».

Обложка поста: pixabay.com

Математика. Деление уголком | Сайт Леонида Некина

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

Деление «уголком» — это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

648 / 2.

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

648 =

 6  ∙ 100 +  4  ∙ 10 +  8  =

 3  ∙  2  ∙ 100 +  2  ∙  2  ∙ 10 +  4  ∙  2  =

( 3  ∙ 100 +  2  ∙ 10 +  4 )  ∙  2  =

 324  ∙  2 .

После этого становится очевидно, что частное от деления равно

648 / 2 = 324.

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

156 / 2 = ?

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

156 =

 15  ∙ 10 +  6 .

Поскольку число  15  не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

 15  =  7 ∙ 2  +  1  =  14  +  1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

156 =

 15  ∙ 10 +  6  =

( 14  +  1 ) ∙ 10 +  6  =

 14   ∙ 10 +  1  ∙ 10 +  6  =

 14  ∙ 10 +  16  =

 7  ∙  2  ∙ 10 +  8  ∙  2  =

( 7  ∙ 10 +  8 ) ∙  2  =

 78  ∙  2 .

Отсюда моментально получаем ответ:

156 / 2 = 78.

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

 

 1 

 5 

 6 

 2 

 

   

   

 

   

   

При делении первых двух разрядов ( 15 ) на двойку получается  7  плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем  семерку  под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

 

 1 

 5 

 6 

 2 

 

   

   

 

 7

   

Умножаем на эту  семерку  наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7

   

Теперь настало время вычислить остаток от деления  15-ти  на  2 . Он равен, очевидно,

 15  −  2  ∙  7  =  15  −  14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 

 

 

У нас получается  единица , к которой мы приписываем  шестерку  из следующего разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 6 

 

 

В результате такого приписывания у нас получается число  16 . Мы делим его на наш делитеть ( 2 ) и получаем  8 . Эту  восьмерку  пишем в строке ответа, под чертой снизу от делителя:
 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

Вычитаем последнюю строку из предпоследней и получаем 0:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

 

 

 0 

 

 

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156 : 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157 : 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

 

 1 

 5 

 7

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 7

 

 

 

 1 

 6 

 

 

 

 

 1

 

 

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

157 =

 14  ∙ 10 +  17  =

 7  ∙  2  ∙ 10 +  8  ∙  2  + 1 =

( 7  ∙ 10 +  8 ) ∙  2  + 1 =

 7 8  ∙  2  + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком»). Допустим, требуется выполнить деление с остатком:

135674 : 259 = ?

Приступаем к заполнению таблицы:

 

                

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

 

 

 

 

 

 

 

 

 

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

 1356  :  259  = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

 1356  /  259  ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 =  5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

 1356  :  259  =  5  (остаток — пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо  пятерки  вполне может стоять  четверка  или  шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту  пятерку  и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

Здесь «маленькие» цифры — это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение  259  ∙  5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа  1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть  пятерку  в строке ответа, на ее место поставить  четверку  — после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

 

 

 

 6 

 1 

 

 

 

 

 

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа  пятерку  на  шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

 1356  :  259  =  5  (ост.  61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем  семерку  из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом — очередь за третьей цифрой. В конце концов таблица принимает такой вид:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 2 

 3 

 

 

 

 6 

 1 

 7 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 259  ∙  2  =   

 

 

 5 

 1 

 8 

 

 

 

 

 

 

 

 

 9 

 9 

 4 

 

 

 

 

 

 

 

   1

  2

 

 

 

 

 259  ∙  3  =   

 

 

 

 7 

 7 

 7 

 

 

 

 

 

 

 

 2 

 1 

 7 

 

 

 

Можно выписывать окончательный ответ:

135674 : 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

 

 2 

 6 

 2 

 7

 4 

 0 

 8 

 7 

 

 

   2

   2 

  

 

 

 

 

 

 

 

 2 

 6 

 1 

 

 

 

 3 

 0 

 2 

 0 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

 

 

 0 

 

 

 

 

 

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

лист со специальной линовкой для вычислений (формат pdf).

Теперь остается только тренироваться, тренироваться и тренироваться.

 

Из «бесконечного» сборника типовых упражнений

Деление нацело на однозначное число

Деление с остатком на однозначное число

Деление с остатком на однозначное число с возможным «приписыванием» нулей

Деление нацело на двузначное число

Деление с остатком на двузначное число

Деление нацело на трехзначное число

Деление с остатком на трехзначное число

 

 

 

Деление с остатком объяснение. Деление столбиком. Деление в столбик

Как научить ребенка делению? Самый простой метод – выучить деление столбиком . Это гораздо проще, чем проводить вычисления в уме, помогает не запутаться, не «потерять» цифры и выработать мысленную схему, которая в дальнейшем будет срабатывать автоматически.

Вконтакте

Как проводится

Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.

Приведем простой пример того, как делить с остатком:

Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:

5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.

Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.

Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.

Основные этапы :

  1. Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
  2. Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 — помещается, 5*2=10 — помещается, 5*3=15 — помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
  3. Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.

Обратите внимание! При делении таким образом, остаток всегда должен быть меньше делителя.

Когда делитель больше делимого

Вызывают затруднение случаи, когда делитель получается больше делимого. Десятичные дроби в программе за 3 класс еще не изучаются, но, следуя логике, ответ надо записывать в виде дроби – в лучшем случае десятичной, в худшем – простой. Но (!) помимо программы, методику вычисления ограничивает поставленная задача : необходимо не разделить, а найти остаток! часть им не является! Как решить такую задачу?

Обратите внимание! Существует правило для случаев, когда делитель больше делимого: неполное частное равно 0, остаток равен делимому.

Как разделить число 5 на число 6, выделив остаток? Сколько 6-литровых банок влезет в пятилитровую? , потому что 6 больше 5.

По заданию необходимо заполнить 5 литров – не заполнено ни одного. Значит, остались все 5. Ответ: неполное частное = 0, остаток = 5.

Деление начинают изучать в третьем классе школы. К этому времени ученики уже должны , что позволяет им совершать деление двузначных чисел на однозначные.

Решите задачу: 18 конфет нужно раздать пятерым детям. Сколько конфет останется?

Примеры:

Находим неполное частное: 3*1=3, 3*2=6, 3*3=9, 3*4=12, 3*5=15. 5 – перебор. Возвращаемся к 4.

Остаток: 3*4=12, 14-12=2.

Ответ: неполное частное 4, осталось 2.

Вы можете спросить, почему при делении на 2, остаток либо равен 1, либо 0. По таблице умножения, между цифрами, кратными двум существует разница в единицу .

Еще одна задача: 3 пирожка надо разделить на двоих.

4 пирожка разделить на двоих.

5 пирожков разделить на двоих.

Работа с многозначными числами

Программа за 4 класс предлагает более сложный процесс проведения деления с увеличением расчетных чисел. Если в третьем классе расчеты проводились на основе базовой таблицы умножения в пределах от 1 до 10, то четвероклассники вычисления проводят с многозначными числами более 100.

Данное действие удобнее всего выполнять в столбик, так как неполное частное также будет двузначным числом (в большинстве случаев), а алгоритм столбика облегчает вычисления и делает их более наглядными.

Разделим многозначные числа на двузначные : 386:25

Данный пример отличается от предыдущих количеством уровней расчета, хотя вычисления проводят по тому же принципу, что и ранее. Рассмотрим подробнее:

386 – делимое, 25 – делитель. Необходимо найти неполное частное и выделить остаток.

Первый уровень

Делитель – двузначное число. Делимое – трехзначное. Выделяем у делимого первые две левые цифры – это 38. Сравниваем их с делителем. 38 больше 25? Да, значит, 38 можно разделить на 25. Сколько целых 25 входит в 38?

25*1=25, 25*2=50. 50 больше 38, возвращаемся на один шаг назад.

Ответ – 1. Записываем единицу в зону не полного частного .

38-25=13. Записываем число 13 под чертой.

Второй уровень

13 больше 25? Нет – значит можно «опустить» цифру 6 вниз, дописав ее рядом с 13, справа. Получилось 136. 136 больше 25? Да – значит можно его вычесть. Сколько раз 25 поместиться в 136?

25*1=25, 25*2=50, 25*3=75, 25*4=100, 25*5=125, 256*=150. 150 больше 136 – возвращаемся назад на один шаг. Записываем цифру 5 в зону неполного частного, справа от единицы.

Вычисляем остаток:

136-125=11. Записываем под чертой. 11 больше 25? Нет – деление провести нельзя. У делимого остались цифры? Нет – делить больше нечего. Вычисления закончены.

Ответ: неполное частное равно 15, в остатке 11.

А если будет предложено такое деление, когда двузначный делитель больше первых двух цифр многозначного делимого? В таком случае, третья (четвертая, пятая и последующая) цифра делимого принимает участие в вычислениях сразу.

Приведем примеры на деление с трех- и четырехзначными числами:

75 – двузначное число. 386 – трехзначное. Сравниваем первые две цифры слева с делителем. 38 больше 75? Нет – деление провести нельзя. Берем все 3 цифры. 386 больше 75? Да – деление провести можно. Проводим вычисления.

75*1=75, 75*2=150, 75*3=225, 75*4=300, 75*5= 375, 75*6=450. 450 больше 386 – возвращаемся на шаг назад. Записываем 5 в зону неполного частного.

Находим остаток: 386-375=11. 11 больше 75? Нет. Еще остались цифры у делимого? Нет. Вычисления закончены.

Ответ: неполное частное = 5, в остатке — 11.

Выполняем проверку: 11 больше 35? Нет – деление провести нельзя. Подставляем третье число – 119 больше 35? Да – действие провести можем.

35*1=35, 35*2=70, 35*3=105, 35*4=140. 140 больше 119 – возвращаемся на один шаг назад. Записываем 3 в зону неполного остатка.

Находим остаток: 119-105=14. 14 больше 35? Нет. Остались цифры у делимого? Нет. Вычисления закончены.

Ответ: неполное частное = 3, осталось — 14.

Проверяем: 11 больше 99? Нет – подставляем еще одну цифру. 119 больше 99? Да – начинаем вычисления.

1199.

99*1=99, 99*2=198 – перебор. Записываем 1 в неполное частное.

Находим остаток: 119-99=20. 2099. Вычисляем.

99*1=99, 99*2=198, 99*3=297. Перебор. Записываем 2 в неполное частное.

Находим остаток: 205-198=7.

Ответ: неполное частное = 12, остаток — 7.

Деление с остатком — примеры

Учимся делить в столбик с остатком

Вывод

Таким образом проводятся вычисления. Если быть внимательным и выполнять правила, то ничего сложного здесь не будет. Каждый школьник может научиться считать столбиком, потому что это быстро и удобно.

Многие числа нельзя разделить нацело, при делении часто присутствует остаток, отличный от нуля. В этой статье мы разберем способы деления натуральных чисел с остатком и подробно рассмотрим их применение на примерах.

Начнем с деления натуральных чисел с остатком в столбик, затем рассмотрим деление с помощью последовательного вычитания. Наконец, закончим разбором метода подбора неполного частного. Приведем алгоритм деления с остатком для наиболее общего случая и покажем, как проводить проверку результата деления натуральных чисел с остатком.

Это один из самых удобных способов деления. Подробно он описан в отдельной статье, посвященной делению натуральных чисел столбиком. Здесь мы не будем приводить всю теорию заново, но сконцентрируемся именно на случае деления с остатком.

Приведем решение примера, так как понять суть метода проще всего на практике.

Пример 1. Как делить натуральные числа с остатком?

Разделим натуральное число 273844 на натуральное число 97 .

Проводим деление столбиком и записываем:

Результат: неполное частное от деления равно 2823 , а остаток равен 13 .

Деление чисел с остатком через последовательное вычитание

Чтобы найти неполное частное и остаток, можно прибегнуть к последовательному вычитанию делителя из делимого. Этот способ не всегда целесообразен, однако в некоторых случаях его очень удобно применять. Вновь обратимся к примеру.

Пример 2. Деление с остатком через последовательное вычитание.

Пусть у нас есть 7 яблок. Нам нужно эти 7 яблок разложить в пакеты по 3 яблока. Иными словами, 7 разделить на 3 .

Возьмем из начального количества яблок 3 штуки и положим в один пакет. У нас останется 7 - 3 = 4 яблока. Теперь, из оставшихся яблок снова отнимаем 3 штуки и кладем уже в другой пакет. Остается 4 - 3 = 1 яблоко.

1 яблоко - это остаток от деления, так как на этом этапе мы уже не можем сформировать еще один пакет с тремя яблоками и деление, по сути, завершено. Результат деления:

7 ÷ 3 = 2 (остаток 1)

Это значит, что число 3 как бы умещается в числе 7 два раза, а единица - остаток, меньший чем 3 .

Рассмотрим еще один пример. На этот раз, приведем только математические выкладки, не прибегая к аналогиям.

Пример 3. Деление с остатком через последовательное вычитание.

Вычислим: 145 ÷ 46 .

Число 99 больше, чем 46 , поэтому продолжаем последовательное вычитание делителя:

Повторяем эту операцию еще раз:

В результате, нам понадобилось последовательно вычесть делитель из делимого 3 раза до того, как мы получили остаток - результат вычитания, который меньше делителя. В нашем случае остатком является число 7 .

145 ÷ 46 = 3 (остаток 7) .

Метод последовательного вычитания непригоден, когда делимое меньше делителя. В таком случае можно сразу записать ответ: неполное частное равно нулю, а остаток равен самому делимому.

Если a

Например:

12 ÷ 36 = 0 (остаток 12) 47 ÷ 88 = 0 (остаток 47)

Также касательно метода последовательного вычитания нужно отметить, что он удобен только в случаях, когда вся операция деления сводится к небольшому количеству вычитаний. Если делимое во много раз больше делителя, использование этого метода будет нецелесообразно и связано с множеством громоздких вычислений.

Метод подбора неполного частного

При делении натуральных чисел с остатком можно вычислить результат методом подбора неполного частного. Покажем, как можно вести процесс подбора, и на чем он основан.

Во-первых, определим, среди каких чисел нужно искать неполное частное. Из самого определения процесса деления понятно, что неполное частное равно нулю, либо является одним из натуральных чисел 1 , 2 , 3 и т.д.

Во-вторых, установим связь между делителем, делимым, неполным частным и остатком. Рассмотрим уравнение d = a - b · c . Здесь d - остаток от деления, a - делимое, b - делитель, с - неполное частное.

В-третьих, не будем забывать, что остаток всегда меньше делителя.

Теперь рассмотрим непосредственно процесс подбора. Делимое a и делитель b известны нам с самого начала. В качестве неполного частного с будем последовательно принимать числа из ряда 0 , 1 , 2 , 3 и т.д. Применяя формулу d = a - b · c и вычисляя полученное значение с делителем, закончим процесс, когда остаток d будет меньше, чем делитель b . Число, взятое за с на этом шаге и будет неполным частным.

Разберем применение этого метода на примере.

Пример 4. Деление с остатком методом подбора

Разделим 267 на 21 .

a = 267 ; b = 21 . Подберем неполное частное.

Используем формулу d = a - b · c и будем последовательно перебирать c , придавая ему значения 0 , 1 , 2 , 3 и т.д.

Если с = 0 , имеем: d = a - b · c = 267 - 21 · 0 = 267 . Число 267 больше, чем 21 , поэтому продолжаем подстановку.

При с = 1 имеем: d = a - b · c = 267 - 21 · 1 = 246 . Т.к. 246 > 21 , снова повторяем процесс.

При с = 2 имеем: d = a - b · c = 267 - 21 · 2 = 267 - 42 = 225 ; 225 > 21 .

При с = 3 имеем: d = a - b · c = 267 - 21 · 3 = 267 - 63 = 204 ; 204 > 21 .

При с = 12 имеем: d = a - b · c = 267 - 21 · 12 = 267 - 252 = 15 ; 15

Алгоритм деления натуральных чисел с остатком

Когда рассмотренные выше методы подбора неполного частного и последовательного вычитания требуют слишком громоздких вычислений, для деления с остатком применяется следующий метод. Рассмотрим алгоритм деления натурального числа a на число b с остатком.

Вспомним, что в случае, когда a b .

Сформулируем три вопроса и ответим на них:

  1. Что там известно?
  2. Что нам нужно найти?
  3. Как мы будем это делать?

Изначально известными являются делимое и делитель: a и b .

Найти нужно неполное частное c и остаток d .

Приведем формулу, которая задает связь между делимым, делителем, неполным частным и остатком. a = b · c + d . Именно это соотношение мы и возьмем за основу алгоритма деления натуральных чисел с остатком. Делимое a нужно представить в виде суммы a = b · c + d , тогда мы найдем искомые величины.

Алгоритм деления, благодаря которому мы представим a в виде суммы a = b · c + d очень схож с алгоритмом деления натуральных чисел без остатка. Приведем ниже шаги алгоритма на примере деления числа 899 на 47 .

1. Первым делом смотрим на делимое и делитель. Выясняем и запоминаем, на сколько знаков число в записи делимого больше числа в делителе. В нашем конкретном примере в делимом три знака, а в делителе - два.

Запомним это число.

2. Справа в записи делителя допишем число нулей, определенное разницей между количеством знаков в делимом и делителе. В нашем случае нужно дописать один нуль. Если записанное число больше делимого, то нужно из запомненного в первом пункте числа вычесть единицу.

В нашем примере справа от 47 дописываем нуль. Так как 470

3. Справа к цифре 1 приписываем количество нулей, равное числу, определенному в предыдущем пункте. В нашем примере, приписывая к единице один нуль, получаем число 10 . В результате данного действия мы получили рабочую единицу разряда, с которым будем работать дальше.

4. Будем последовательно умножать делитель на 1 , 2 , 3 . . и т.д. единицы рабочего разряда, пока не получим число, которое больше или равно делимому.

Рабочий разряд в нашем примере - десятки. После умножения делителя на одну единицу рабочего разряда, получаем 470 .

470 899 .

Число, которое мы получили на предпоследнем шаге (470 = 47 · 10) является первым из искомых слагаемых.

5. Найдем разность между делимым и первым найденным слагаемым. Если полученное число больше делителя, то переходим к нахождению второго слагаемого.

Шаги 1 - 5 повторяем, однако в качестве делимого принимаем полученное здесь число. Если снова получаем число, большее, чем делитель, снова по-кругу повторяем пункты 1 - 5 , но уже с новым числом в качестве делимого. Продолжаем, пока полученное здесь число не будет меньше делителя. Переходим к завершающему этапу. Забегая вперед, скажем, что последнее полученное число и будет равно остатку.

Обратимся к примеру. 899 - 470 = 429 , 429 > 47 . Повторяем шаги 1 - 5 алгоритма с числом 429 , взятым в качестве делимого.

1. В записи числа 429 на один знак больше, чем в записи числа 47 . Запоминаем разницу - число 1 .

2. В записи делимого справа дописываем один нуль. Получаем число 470 . Так как 470 > 429 , из запомненного в предыдущем пункте числа 1 вычитаем 1 и получаем 1 - 1 = 0 . Запоминаем 0 .

3. Так как в предыдущем пункте мы получили число 0 и запомнили его, нам не нужно прибавлять ни одного нуля к единице справа. Таким образом, рабочим разрядом являются единицы

4. Последовательно умножим делитель 47 на 1 , 2 , 3 . . и т.д. Не будем приводить подробные выкладки, а обратим внимание на конечный результат: 47 · 9 = 423 429 . Таким образом, второе искомое слагаемое - 47 · 9 = 423 .

5. Разность между 429 и 423 равна числу 6 . Так как 6

6. Целью предыдущих действий было представление делимого в виде суммы нескольких слагаемых. Для нашего примера мы получили 899 = 470 + 423 + 6 . Вспоминаем, что 470 = 47 · 10 , 423 = 47 · 9 . Перепишем равенство:

899 = 47 · 10 + 47 · 9 + 6

Применим распределительное свойство умножения.

899 = 47 · 10 + 47 · 9 + 6 = 47 · (10 + 9) + 6

899 = 47 · 19 + 6 .

Таким образом, мы представили делимое в виде уже данной ранее формулы a = b · c + d .

Искомые неизвестные:неполное частное с = 19 , остаток d = 6 .

Безусловно, при решении практических примеров нет нужды расписывать все действия так подробно. Покажем это:

Пример 5. Деление натуральных чисел с остатком

Разделим числа 42252 и 68 .

Используем алгоритм. Первые пять шагов дают первое слагаемое - число 40800 = 68 · 600 .

Снова повторяем первые пять шагов алгоритма с числом 1452 = 42252 - 40800 и получаем второе слагаемое 1360 = 68 · 20

Третий раз проходим шаги аглоритма, но у же с новым числом 92 = 1452 - 1360 . Третье слагаемое равно 68 = 68 · 1 . Остаток равен 24 = 92 - 68 .

В результате получаем:

42252 = 40800 + 1360 + 68 + 24 = 68 · 600 + 68 · 20 + 68 · 1 + 24 = = 68 · (600 + 20 + 1) + 24 = 68 · 621 + 24

Неполное частное равно 621 , остаток равен 24 .

Деление натуральных чисел с остатком. Проверка результата

Деление натуральных чисел с остатком, особенно при больших числах, довольно трудоемкий и громоздкий процесс. Допустить ошибку в вычислениях может каждый. Именно поэтому, проверка результата деления поможет понять, все ли вы сделали правильно. Проверка результата деления натуральных чисел с остатком выполняется в два этапа.

На первом этапе проверяем, не получился ли остаток больше делителя. Если нет, то все хорошо. Иначе, можно сделать вывод, что что-то пошло не так.

Важно!

Остаток всегда меньше делителя!

На втором этапе проверяется справедливость равенства a = b · c + d . Если равенство после подстановки значений оказывается верным, то и деление было выполнено без ошибок.

Пример 6. Проверка результата деления натуральных чисел с остатком.

Проверим, верно ли, что 506 ÷ 28 = 17 (остаток 30) .

Сравниваем остаток и делитель: 30 > 28 .

Значит, деление выполнено неверно.

Пример 7. Проверка результата деления натуральных чисел с остатком.

Школьник разделил 121 на 13 и получил в результате неполное частное 9 с остатком 5 . Правильно ли он сделал?

Чтобы узнать это, сначала сравниваем остаток и делитель: 5

Первый пункт проверки пройден, переходим ко второму.

Запишем формулу a = b · c + d . a = 121 ; b = 13 ; c = 9 ; d = 5 .

Подставляем значения и сравниваем результаты

13 · 9 + 5 = 117 + 5 = 122 ; 121 ≠ 122

Значит, в вычисления школьника где-то закралась ошибка.

Пример 8. Проверка результата деления натуральных чисел с остатком.

Студент выполнял лабораторную работу по физике. В ходе выполнения ему понадобилось разделить 5998 на 111 . В результате у него получилось число 54 с остатком 4 . Все ли правильно посчитано?

Проверим! Остаток 4 меньше, чем делитель 111 , поэтому переходим ко второму этапу проверки.

Используем формулу a = b · c + d , где a = 5998 ; b = 111 ; c = 54 ; d = 4 .

После подстановки, имеем:

5998 = 111 · 54 + 4 = 5994 + 4 = 5998 .

Равенство корректно, а значит, и деление выполнено верно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Деление с остатком проходят в третьем классе начальной школы. Тема довольно сложная для понимания ребенком и требует от него практически идеального знания таблицы умножения. Но все математические знания улучшаются с практикой, и поэтому, решая задания, ребенок с каждым примером будет выполнять его все быстрее и с меньшим количеством ошибок. Наш тренажер предполагает отработку навыка быстрого деления с остатком.

Как делить с остатком

1. Определяем, что деление с остатком (не делится нацело).

34:6 не решается без остатка

2. Подбираем ближайшее меньшее число к первому (делимому), которое делится на второе (делитель).

Ближайшее к 34 меньшее число, которое делится на 6 - это 30

3. Выполняем деление этого числа на делитель.

4. Пишем ответ (частное).

5. Чтобы найти остаток, от первого числа (делимого) вычитаем то число, которое подобрали. Записываем остаток. При делении с остатком остаток всегда должен получиться меньше делителя.

34-30=4 (ост. 4) 4

Проверяем деление так:

Умножаем ответ на делитель (второе число) и прибавляем к ответу остаток. Если получается делимое (первое число), то деление выполнил верно.

5*6+4=34 Деление выполнено верно.

Большие числа легко и просто делятся столбиком. При этом в уголке под делителем у нас запишется целое число, а в самом низу останется остаток, который меньше делителя.

Если при делении с остатком делимое меньше делителя, то их неполное частное равно нулю, а остаток равен делимому.

Например:

6: 10 = 0 (ост. 6)
14: 112 = 0 (ост. 14)

Скачать карточки-тренажеры на деление с остатком

Сохраните лист-карточку себе на компьютер и распечатайте на А4. Одного листа хватит на 5 дней отработки деления с остатком. В нем 5 столбиков с примерами. Вы можете даже разрезать лист на 5 частей. Над каждым столбиком - тучка, смайлик и солнышко, пусть ребенок оценит свою работу, когда закончит столбик.

Чем занимается на математике 3 класс? Деление с остатком, примеры и задачи - вот что изучается на уроках. О делении с остатком и алгоритме таких вычислений пойдет речь в статье.

Особенности

Рассмотрим темы, включенные в программу, которую изучает 3 класс. Деление с остатком выделено в специальный раздел математики. О чем идет речь? Если делимое не делится на делитель нацело, то остается остаток. Например, делим 21 на 6. Получается 3, но в остатке остается 3.

В случаях, когда во время деления натуральных чисел остаток равен нулю, говорят о том, что произведено деление нацело. Например, если 25 нужно поделить на 5, получается число 5. Остаток равен нулю.

Решение примеров

Для того чтобы произвести деление с остатком, используется определенная запись.

Приведем примеры по математике (3 класс). Деление с остатком в столбик можно не записывать. Достаточно записи в строчку: 13:4=3 (остаток 1) или 17:5=3 (остаток 2).

Разберем все подробнее. Например, при делении 17 на три получается целое число пять, кроме того, получается остаток два. Каков порядок решения такого примера на деление с остатком? Сначала необходимо отыскать максимальное число до 17, разделить которое можно без остатка на три. Самым большим будет 15.

Далее проводится деление 15 на число три, результатом действия будет цифра пять. Теперь вычитаем из делимого число, найденное нами, то есть из 17 отнимаем 15, получаем два. Обязательным действием является сверка делителя и остатка. После проверки обязательно записывается ответ совершенного действия. 17:3=15 (остаток 2).

Если остаток будет больше делителя, действие выполнено неправильно. Именно по такому алгоритму выполняет 3 класс деление с остатком. Примеры сначала разбирает учитель на доске, затем ребятам предлагается проверка знаний путем проведения самостоятельной работы.

Пример с умножением

Одна из самых трудных тем, с которой сталкивается 3 класс, - деление с остатком. Примеры могут быть сложными, особенно когда требуются дополнительные расчеты, записываемые в столбик.

Допустим, необходимо разделить число 190 на 27 с получением минимального остатка. Попробуем решить задачу, пользуясь умножением.

Подберем число, которое при умножении будет давать цифру, максимально приближенную к числу 190. Если умножить 27 на 6, получим цифру 162. Вычтем из 190 число 162, остаток будет 28. Он получился больше, чем исходный делитель. Следовательно, число шесть не подходит для нашего примера в качестве множителя. Продолжим решение примера, взяв для умножения число 7.

Умножая 27 на 7, мы получим произведение 189. Далее проведем проверку правильности решения, для этого вычтем из 190 полученный результат, то есть отнимем число 189. Остатком будет 1, что явно меньше 27. Именно так решаются сложные выражения в школе (3 класс, деление с остатком). Примеры всегда предусматривают запись ответа. Все математическое выражение можно оформить так: 190:27=7 (остаток 1). Подобные вычисления можно производить и в столбик.

Именно так осуществляет 3 класс деление с остатком. Примеры, приведенные выше, помогут разобраться в алгоритме решения подобных задач.

Заключение

Для того чтобы у учеников начальных классов были сформированы правильные вычислительные навыки, педагог во время проведения занятий по математике обязан уделять внимание пояснению алгоритма действий ребенка при решении заданий на деление с остатком.

По новым федеральным государственным образовательным стандартам особое внимание уделяется индивидуальному подходу к обучению. Учитель должен подбирать задания для каждого ребенка с учетом его индивидуальных способностей. На каждой ступени обучения правилам деления с остатком педагог должен осуществлять промежуточный контроль. Он позволяет ему выявлять основные проблемы, возникающие с усвоением материала у каждого ученика, своевременно проводить коррекцию знаний и навыков, устранять появляющиеся проблемы, получать желаемый результат.

Деление – одна из четырех основных математических операций (сложение , вычитание , умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение . 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

    Найти сумму цифр делимого.

    Поделить на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение . В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1 . Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2 . На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4 . Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг . Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг . Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг . Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под делителем.

5 шаг . После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг . Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг *. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 - класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Примеры на деление

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение"

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение перезагрузка"

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать.

После прохождения курса ребенок сможет:

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Решение примера столбиком 64 6. Деление столбиком. Игра "Быстрое сложение"

Один из важных этапов в обучении ребёнка математическим действиям – обучение операции деления простых чисел. Как объяснить ребёнку деление, когда можно приступать к освоению этой темы?

Для того чтобы научить ребёнка делению, необходимо, чтобы он к моменту обучения уже освоил такие математические операции, как сложение, вычитание, а также имел чёткое представление о самой сущности действий умножения и деления. То есть, он должен понимать, что деление – это разделение чего-либо на равные части. Также необходимо научить операции умножения и выучить таблицу умножения.

Я уже писала о том, Эта статья может стать для вас полезной.

Осваиваем операцию разделения (деления) на части в игровой форме

На этом этапе необходимо сформировать у ребёнка понимание того, что деление – это разделение чего-либо на равные части. Самый просто способ научить ребёнка этому – предложить ему разделить некоторое количество предметов между ним его друзьями или членами семьи.

Допустим, возьмите 8 одинаковых кубиков и предложите ребёнку разделить на две равные части – для него и другого человека. Варьируйте и усложняйте задание, предложите ребёнку разделить 8 кубиков не на двоих, а на четырёх человек. Проанализируйте вместе с ним результат. Меняйте составляющие, пробуйте с другим количеством предметов и людей, на которые нужно разделить эти предметы.

Важно: Следите, чтобы вначале ребёнок оперировал с чётным количеством предметов, для того, чтобы результатом деления было одинаковое количество частей. Это окажется полезным на следующем этапе, когда ребёнку будет нужно понять, что деление – это операция обратная умножению.

Умножаем и делим, используя таблицу умножения

Объясните ребёнку, что, в математике, действие, противоположное умножению, называется «деление». Оперируя таблицей умножения, продемонстрируйте ученику на любом примере взаимосвязь между умножением и делением.

Пример: 4х2=8. Напомните ребёнку, что результатом умножения является произведение двух чисел. После этого объясните, что операция деления, является обратной операции умножения и проиллюстрируйте это наглядно.

Разделите получившееся произведение «8» из примера – на любой из множителей – «2» или «4», и результатом всегда будет другой, не использовавшийся в операции множитель.

Также нужно научить юного ученика, тому, как называются категории, описывающие операцию деления – «делимое», «делитель» и «частное». На примере покажите, какие цифры являются делимым, делителем и частным. Закрепите эти знания, они необходимы для дальнейшего обучения!

По сути, вам нужно научить ребёнка таблице умножения «наоборот», и запомнить её необходимо так же хорошо, как и саму таблицу умножения, ведь это будет необходимым, когда вы начнёте обучение делению в столбик.

Делим столбиком – приведем пример

Перед началом занятия вспомните вместе с ребёнком, как называются цифры в процессе операции деления. Что является «делителем», «делимым», «частным»? Научите безошибочно и быстро определять эти категории. Это будет очень полезным во время обучения ребёнка делению простых чисел.

Объясняем наглядно

Давайте разделим 938 на 7. В данном примере 938 – это делимое, 7 – делитель. Результатом будет частное, его то и нужно вычислить.

Шаг 1 . Записываем числа, разделив их «уголком».

Шаг 2. Покажите ученику числа делимого и предложите ему, выбрать из них то наименьшее число, которое окажется больше делителя. Из трёх цифр 9, 3 и 8, этим числом будет 9. Предложите ребёнку проанализировать, сколько раз число 7 может содержаться в числе 9? Правильно, только один раз. Поэтому первым записанными нами результатом будет 1.

Шаг 3. Переходим к оформлению деления столбиком:

Умножаем делитель 7х1 и получаем 7. Полученный результат записываем под первым числом нашего делимого 938 и вычитаем, как обычно, в столбик. То есть из 9 мы вычитаем 7 и получаем 2.

Записываем результат.

Шаг 4. Число, которое мы видим, меньше делителя, поэтому необходимо его надо увеличить. Для этого объединим его со следующим неиспользованным числом нашего делимого – это будет 3. Приписываем 3 к полученному числу 2.

Шаг 5. Далее действуем по уже известному алгоритму. Анализируем, сколько раз наш делитель 7 содержится в полученном числе 23? Правильно, три раза. Фиксируем число 3 в частном. А результат произведения – 21 (7*3) записываем внизу под числом 23 в столбик.

Шаг.6 Теперь осталось найти последнее число нашего частного. Используя уже знакомый алгоритм, продолжаем делать вычисления в столбике. Путём вычитания в столбике (23-21) получаем разницу. Она равняется 2.

Из делимого у нас осталась неиспользованным одно число – 8. Объединяем его с полученным в результате вычитания числом 2, получаем – 28.

Шаг.7 Анализируем, сколько раз наш делитель 7 содержится в полученном числе? Правильно, 4 раза. Записываем полученную цифру в результат. Итак, мы полученное в результате деления столбиком частное= 134.

Как научить ребенка делению – закрепляем навык

Главное из-за чего у многих школьников возникает проблема с математикой - это неумение быстро делать простые арифметические расчеты. А на этой основе построена вся математика в начальной школе. Особенно часто проблема именно в умножении и делении.
Чтобы ребенок научился быстро и качественно проводить расчеты деления в уме - необходима правильная методика обучения и закрепление навыка. Для этого мы советуем воспользоваться популярными на сегодня пособиями в усвоение навыка деления. Одни предназначены для занятий детей с родителями, другие для самостоятельной работы.

  1. «Деление. Уровень 3. Рабочая тетрадь» от крупнейшего международного центра дополнительного образования Kumon
  2. «Деление. Уровень 4. Рабочая тетрадь» от Kumon
  3. «Не Ментальная арифметика. Система обучения ребенка быстрому умножению и делению. За 21 день. Блокнот-тренажёр.» от Ш. Ахмадулина - автора обучающих книг-бестселлеров

Самым главным, когда вы учите ребёнка делению в столбик, является усвоение алгоритма, который, в общем-то, достаточно прост.

Если ребёнок хорошо оперирует таблицей умножения и «обратным» делением, у него не возникнет трудностей. Тем не менее очень важно постоянно тренировать полученный навык. Не останавливайтесь на достигнутом, как только вы поймёте, что ребёнок уловил суть метода.

Для того чтобы легко научить ребёнка операции деления нужно:

  • Чтобы в возрасте двух–трех лет он освоил отношения «целое – часть». У него должно сложиться понимание целого, как неразделимой категории и восприятие отдельной части целого как самостоятельного объекта. Например – игрушечный грузовик – целое, а его кузов, колеса, дверцы – части этого целого.
  • Чтобы в младшем школьном возрасте ребенок свободно оперировал действиями по сложению и вычитанию чисел, понимал суть процессов умножения и деления.

Для того чтобы занятия математикой доставляли ребёнку удовольствие, необходимо возбуждать его интерес к математике и математическим действиям, не только во время обучения, но и в бытовых ситуациях.

Поэтому поощряйте и развивайте наблюдательность у ребёнка, проводите аналогии с математическими действиями (операции на счёт и деление, анализ отношений «часть-целое» и т.д.) во время конструирования, игр и наблюдений за природой.

Преподаватель, специалист детского развивающего центра
Дружинина Елена
специально для проекта сайт

Видео сюжет для родителей, как правильно объяснить ребенку деление в столбик:

Деление – одна из четырех основных математических операций (сложение , вычитание , умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение . 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

    Найти сумму цифр делимого.

    Поделить на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение . В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1 . Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2 . На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4 . Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг . Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг . Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг . Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под делителем.

5 шаг . После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг . Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг *. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 - класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Примеры на деление

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение"

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение перезагрузка"

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать.

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова
  2. Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

    Деньги и мышление миллионера

    Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

    Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Для деления чисел из двух и более цифр (знаков) применяют деление в столбик .

По традиции, разбираться как делить столбиком будем на примере.

Вычислить:

Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:

Их частное (результат) будем записывать под делителем. У нас это цифра «8 ».

Начинаем делить «512 » на «8 » следующим образом:

  1. Определяем неполное частное . Для этого слева направо сравниваем цифры делимого и делитель.

    Берём «5 ». Цифра «5 » меньше «8 », значит нужно взять еще одну цифру из делимого.

  2. «51 » больше «8 ». Значит это неполное частное. Ставим точку в частном (под уголком делителя).

    Запомните!

    Для того, чтобы избежать ошибок, не забывайте определять количество цифр в частном.

    Для этого посчитаем сколько цифр осталось в делимом, после неполного частного. У нас после «51 » стоит только одно цифра «2 ». Значит и добавляем в результат ещё одну точку.

  3. Приступаем к делению. Вспоминая таблицу умножения на «8 », находим ближайшее к «51 » произведение.
    «6 · 8 = 48 »
    Записываем цифру «6 » в частное.

    Записываем «48 » под «51 ».

    Запомните!

    При записи под неполном частным самая правая цифра неполного частного должна стоять над самой правой цифрой произведения.

    Между «51 » и «48 » слева поставим «− » (минус). Вычтем по правилам вычитания в столбик «48 » и под чертой запишем результат.

  4. В остатке получилось «3 ». Сравним остаток с делителем. «3 » меньше «8 ».

Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком .

Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:

За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:

Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:

Под делимым будут записываться промежуточные вычисления:

Полностью форма записи деления столбиком выглядит следующим образом:

Как делить столбиком

Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:

В нашем случае число 78 будет неполным делимым , неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра - 0, это значит, что частное будет состоять из 2 цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше.

К получившемуся остатку - 6, сносим следующую цифру делимого - 0. В результате, получилось неполное делимое - 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное - оно записано под делителем:

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.

Определяем неполное делимое - это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого - 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0: 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого - 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.

Определяем неполное делимое - это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого - 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:

Сносим следующую цифру делимого - 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток - 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:

Деление столбиком с остатком

Пусть нам требуется разделить 1340 на 23.

Определяем неполное делимое - это число 134. Записываем в частное 5 и из 134 вычитаем 115. В остатке получилось 19:

Сносим следующую цифру делимого - 0. Определяем, сколько раз 23 содержится в числе 190. Получаем число 8, записываем его в частное, а из 190 вычитаем 184. Получаем остаток 6:

Так как в делимом больше не осталось цифр, деление закончилось. В результате получилось неполное частное 58 и остаток 6:

1340: 23 = 58 (остаток 6)

Осталось рассмотреть пример деления с остатком, когда делимое меньше делителя. Пусть нам требуется разделить 3 на 10. Мы видим, что 10 ни разу не содержится в числе 3, поэтому записываем в частное 0 и из 3 вычитаем 0 (10 · 0 = 0). Проводим горизонтальную черту и записываем остаток - 3:

3: 10 = 0 (остаток 3)

Калькулятор деления столбиком

Данный калькулятор поможет вам выполнить деление столбиком. Просто введите делимое и делитель и нажмите кнопку Вычислить.

как объяснить ребенку деление в столбик

Научить ребенка делению столбиком просто. Необходимо объяснить алгоритм этого действия и закрепить пройденный материал.

  • Согласно школьной программе, деление столбиком детям начинают объяснять уже в третьем классе. Ученики, которые схватывают все «на лету», быстро понимают эту тему
  • Но, если ребенок заболел и пропустил уроки математики, или он не понял тему, тогда родители должны самостоятельно малышу объяснить материал. Нужно максимально доступно донести до него информацию
  • Мамы и папы во время учебного процесса ребенка должны быть терпеливыми, проявляя такт по отношению к своему чаду. Ни в коем случае нельзя кричать на ребенка, если у него что-то не получается, ведь так можно отбить у него всю охоту к занятиям



Важно: Чтобы ребенок понял деление чисел, он должен досконально знать таблицу умножения. Если малыш плохо знает умножение, он не поймет деление.

Во время домашних дополнительных занятий можно пользоваться шпаргалками, но ребенок должен выучить таблицу умножения, прежде чем, приступать к теме «Деление».

Итак, как объяснить ребенку деление столбиком :

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные



Деление всегда дается детям немного сложнее, чем умножение. Но усердные дополнительные занятия дома помогут малышу понять алгоритм этого действия и не отставать от сверстников в школе.

Начинайте с простого — деление на однозначное число:

Важно: Просчитайте в уме, чтобы деление получилось без остатка, иначе ребенок может запутаться.

Например, 256 разделить на 4:

  • Начертите на листе бумаги вертикальную линию и разделите ее с правой части пополам. Слева напишите первую цифру, а справа над чертой вторую
  • Спросите у малыша, сколько четверок помещается в двойке — нисколько
  • Тогда берем 25. Для наглядности отделите это число сверху уголком. Опять спросите у ребенка, сколько помещается четверок в двадцати пяти? Правильно — шесть. Пишем цифру «6» в правом нижнем углу под линией. Ребенок должен использовать таблицу умножения для правильного ответа
  • Запишите под 25 цифру 24, и подчеркните, чтобы записать ответ — 1
  • Опять спрашивайте: в единице сколько помещается четверок — нисколько. Тогда сносим к единице цифру «6»
  • Получилось 16 — сколько четверок помещается в этом числе? Правильно — 4. Записываем «4» рядом с «6» в ответе
  • Под 16 записываем 16, подчеркиваем и получается «0», значит мы разделили правильно и ответ получился «64»

Письменное деление на двузначное число



Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно



Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

Например:

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.



Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375



Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).



Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Деление многозначных или многоразрядных чисел удобно производить письменно в столбик . Давайте разберем, как это делать. Начнем с деления многоразрядного числа на одноразрядное, и постепенно увеличим разрядность делимого.

Итак, поделим 354 на 2 . Для начала разместим эти числа как показано на рисунке:

Делимое размещаем слева, делитель справа, а частное будем записывать под делителем.

Теперь начинаем делить делимое на делитель поразрядно слева на право. Находим первое неполное делимое , для этого берем первый слева разряд, в нашем случае 3 и сравниваем с делителем.

3 больше 2 , значит 3 и есть неполное делимое. Ставим точку в частном и определяем, сколько ещё разрядов будет в частном – столько же, сколько осталось в делимом после выделения неполного делимого. В нашем случае в частном столько же разрядов, сколько в делимом, то есть старшим разрядом будут сотни:

Для того чтобы 3 разделить на 2 вспоминаем таблицу умножения на 2 и находим число при умножении которого на 2 получим наибольшее произведение, которое меньше 3.

2 × 1 = 2 (2

2 × 2 = 4 (4 > 3)

2 меньше 3 , а 4 больше, значит, берем первый пример и множитель 1 .

Записываем 1 в частное на место первой точки (в разряд сотен), а найденное произведение записываем под делимым:

Теперь находим разность, между первым неполным делимым и произведением найденного разряда частного и делителем:

Полученное значение сравниваем с делителем. 15 больше 2 , значит, мы нашли второе неполное делимое. Для того чтобы найти результат деления 15 на 2 вновь вспоминаем таблицу умножения на 2 и находим наибольшее произведение, которое меньше 15 :

2 × 7 = 14 (14

2 × 8 = 16 (16 > 15)

Искомый множитель 7 , записываем его в частное на место второй точки (в десятки). Находим разность между вторым неполным делимым и произведением найденного разряда частного и делителя:

Продолжаем деление, для чего находим третье неполное делимое . Спускаем следующий разряд делимого:

Делим неполное делимое на 2, полученное значение ставим в разряд единиц частного. Проверим правильность деления:

2 × 7 = 14

Результат деления третьего неполного делимого на делитель пишем в частное, находим разность:

Разность мы получили равную нулю, значит деление произведено правильно .

Усложним задачу и приведем другой пример:

1020 ÷ 5

Запишем наш пример в столбик и определим первое неполное частное:

Разряд тысяч делимого составляет 1 , сравниваем с делителем:

1

Добавляем в неполное делимое разряд сотен и сравниваем:

10 > 5 – мы нашли неполное делимое.

Делим 10 на 5 , получаем 2 , записываем результат в частное. Разность между неполным делимым и результатом умножения делителя и найденного разряда частного.

10 – 10 = 0

0 мы не пишем, опускаем следующий разряд делимого – разряд десятков:

Сравниваем второе неполное делимое с делителем.

2

Нам следует добавить в неполное делимое ещё один разряд, для этого в частное, на разряд десятков ставим 0 :

20 ÷ 5 = 4

Записываем ответ в разряд единиц частного и проверяем: записываем произведение под второе неполное делимое и вычисляем разность. Получаем 0 , значит пример решён правильно .

И ещё 2 правила деления в столбик:

1. Если в делимом и делителе в младших разрядах стоят нули, то перед делением их можно сократить, например:

Сколько нулей в младшем разряде делимого мы убираем, столько же нулей убираем в младших разрядах делителя.

2. Если в делимом после деления остались нули, то их следует перенести в частное:

Итак, сформулируем последовательность действий при делении в столбик.

  1. Размещаем делимое слева, делитель справа. Помним, что делимое мы делим, поразрядно выделяя неполные делимые и деля их последовательно на делитель. Разряды в неполное делимое выделяются слева направо от старших к младшим.
  2. Если в делимом и делителе в младших разрядах стоят нули, то перед делением их можно сократить.
  3. Определяем первый неполный делитель:

а) выделяем в неполный делитель старший разряд делимого;

б) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (в) , если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4 ;

в) добавляем в неполное делимое следующий разряд и переходим к пункту (б) .

  1. Определяем сколько разрядов будет в частном, и ставим столько точек на месте частного (под делителем) сколько будет в нем разрядов. Одна точка (один разряд) за все первое неполное делимое и остальных точек (разрядов) столько же, сколько осталось разрядов в делимом после выделения неполного делимого.
  2. Делим неполное делимое на делитель, для этого находим число, при умножении которого на делитель получилось бы число либо равное неполному делимому, либо меньше его.
  3. Найденное число записываем на место очередного разряда частного (точки), а результат умножения его на делитель записываем под неполным делимым и находим их разность.
  4. Если найденная разность меньше или равна неполному делимому значит, мы правильно поделили неполное делимое на делитель.
  5. Если в делимом остались еще разряды, то продолжаем деление, иначе переходим к пункту 10 .
  6. Опускаем к разности следующий разряд делимого и получаем очередное неполное делимое:

а) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (б), если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4;

б) добавляем к неполному делимому следующий разряд делимого, при этом в частное на место следующего разряда (точки) пишем 0;

в) переходим к пункту (а).

10. Если мы выполняли деление без остатка и последняя найденная разность равна 0 , то мы правильно выполнили деление .

Мы говорили о делении многоразрядного числа на одноразрядное. В случае, когда разрядность делителя больше, деление выполняется аналогично:

В школе эти действия изучаются от простого к сложному. Поэтому непременно полагается хорошо усвоить алгоритм выполнения названных операций на простых примерах. Чтобы потом не возникло трудностей с делением десятичных дробей в столбик. Ведь это самый сложный вариант подобных заданий.

Этот предмет требует последовательного изучения. Пробелы в знаниях здесь недопустимы. Такой принцип должен усвоить каждый ученик уже в первом классе. Поэтому при пропуске нескольких уроков подряд материал придется освоить самостоятельно. Иначе позже возникнут проблемы не только с математикой, но и другими предметами, связанными с ней.

Второе обязательное условие успешного изучения математики — переходить к примерам на деление в столбик только после того, как освоены сложение, вычитание и умножение.

Ребенку будет трудно делить, если он не выучил таблицу умножения. Кстати, ее лучше учить по таблице Пифагора. Там нет ничего лишнего, да и усваивается умножение в таком случае проще.

Как умножаются в столбик натуральные числа?

Если возникает затруднение в решении примеров в столбик на деление и умножение, то начинать устранять проблему полагается с умножения. Поскольку деление является обратной операцией умножению:

  1. До того как перемножать два числа, на них нужно внимательно посмотреть. Выбрать то, в котором больше разрядов (длиннее), записать его первым. Под ним разместить второе. Причем цифры соответствующего разряда должны оказаться под тем же разрядом. То есть самая правая цифра первого числа должна быть над самой правой второго.
  2. Умножьте крайнюю правую цифру нижнего числа на каждую цифру верхнего, начиная справа. Запишите ответ под чертой так, чтобы его последняя цифра была под той на которую умножали.
  3. То же повторите с другой цифой нижнего числа. Но результат от умножения при этом нужно сместить на одну цифру влево. При этом его последняя цифра окажется под той, на которую умножали.

Продолжать такое умножение в столбик до тех пор, пока не закончатся цифры во втором множителе. Теперь их нужно сложить. Это и будет искомый ответ.

Алгоритм умножения в столбик десятичных дробей

Сначала полагается представить, что даны не десятичные дроби, а натуральные. То есть убрать из них запятые и далее действовать так, как описано в предыдущем случае.

Отличие начинается, когда записывается ответ. В этот момент необходимо сосчитать все цифры, которые стоят после запятых в обеих дробях. Именно столько их нужно отсчитать от конца ответа и там поставить запятую.

Удобно проиллюстрировать этот алгоритм на примере: 0,25 х 0,33:

С чего начать обучение делению?

До того как решать примеры на деление в столбик, полагается запомнить названия чисел, которые стоят в примере на деление. Первое из них (то, которое делится) — делимое. Второе (на него делят) — делитель. Ответ — частное.

После этого на простом бытовом примере объясним суть этой математической операции. Например, если взять 10 конфет, то поделить их поровну между мамой и папой легко. А как быть, если нужно раздать их родителям и брату?

После этого можно знакомиться с правилами деления и осваивать их на конкретных примерах. Сначала простых, а потом переходить ко все более сложным.

Алгоритм деления чисел в столбик

Вначале представим порядок действий для натуральных чисел, делящихся на однозначное число. Они будут основой и для многозначных делителей или десятичных дробей. Только тогда полагается внести небольшие изменения, но об этом позже:

  • До того как делать деление в столбик, нужно выяснить, где делимое и делитель.
  • Записать делимое. Справа от него - делитель.
  • Прочертить слева и снизу около последнего уголок.
  • Определить неполное делимое, то есть число, которое будет минимальным для деления. Обычно оно состоит из одной цифры, максимум из двух.
  • Подобрать число, которое будет первым записано в ответ. Оно должно быть таким, сколько раз делитель помещается в делимом.
  • Записать результат от умножения этого числа на делитель.
  • Написать его под неполным делимом. Выполнить вычитание.
  • Снести к остатку первую цифру после той части, которая уже разделена.
  • Снова подобрать число для ответа.
  • Повторить умножение и вычитание. Если остаток равен нулю и делимое закончилось, то пример сделан. В противном случае повторить действия: снести цифру, подобрать число, умножить, вычесть.

Как решать деление в столбик, если в делителе больше одной цифры?

Сам алгоритм полностью совпадает с тем, что был описан выше. Отличием будет количество цифр в неполном делимом. Их теперь минимум должно быть две, но если они оказываются меньше делителя, то работать полагается с первыми тремя цифрами.

Существует еще один нюанс в таком делении. Дело в том, что остаток и снесенная к нему цифра иногда не делятся на делитель. Тогда полагается приписать еще одну цифру по порядку. Но при этом в ответ необходимо поставить ноль. Если осуществляется деление трехзначных чисел в столбик, то может потребоваться снести больше двух цифр. Тогда вводится правило: нолей в ответе должно быть на один меньше, чем количество снесенных цифр.

Рассмотреть такое деление можно на примере - 12082: 863.

  • Неполным делимым в нем оказывается число 1208. В него число 863 помещается только один раз. Поэтому в ответ полагается поставить 1, а под 1208 записать 863.
  • После вычитания получается остаток 345.
  • К нему нужно снести цифру 2.
  • В числе 3452 четыре раза умещается 863.
  • Четверку необходимо записать в ответ. Причем при умножении на 4 получается именно это число.
  • Остаток после вычитания равен нулю. То есть деление закончено.

Ответом в примере будет число 14.

Как быть, если делимое заканчивается на ноль?

Или несколько нолей? В этом случае нулевой остаток получается, а в делимом еще стоят нули. Отчаиваться не стоит, все проще, чем может показаться. Достаточно просто приписать к ответу все нули, которые остались не разделенными.

Например, нужно поделить 400 на 5. Неполное делимое 40. В него 8 раз помещается пятерка. Значит, в ответ полагается записать 8. При вычитании остатка не остается. То есть деление закончено, но в делимом остался ноль. Его придется приписать к ответу. Таким образом, при делении 400 на 5 получается 80.

Что делать, если разделить нужно десятичную дробь?

Опять же, это число похоже на натуральное, если бы не запятая, отделяющая целую часть от дробной. Это наводит на мысль о том, что деление десятичных дробей в столбик подобно тому, которое было описано выше.

Единственным отличием будет пункт с запятой. Ее полагается поставить в ответ сразу, как только снесена первая цифра из дробной части. По-другому это можно сказать так: закончилось деление целой части — поставь запятую и продолжай решение дальше.

Во время решения примеров на деление в столбик с десятичными дробями нужно помнить, что в части после запятой можно приписать любое количество нолей. Иногда это нужно для того, чтобы доделить числа до конца.

Деление двух десятичных дробей

Оно может показаться сложным. Но только вначале. Ведь то, как выполнить деление в столбик дробей на натуральное число, уже понятно. Значит, нужно свести этот пример к уже привычному виду.

Сделать это легко. Нужно умножить обе дроби на 10, 100, 1 000 или 10 000, а может быть, на миллион, если этого требует задача. Множитель полагается выбирать исходя из того, сколько нолей стоит в десятичной части делителя. То есть в результате получится, что делить придется дробь на натуральное число.

Причем это будет в худшем случае. Ведь может получиться так, что делимое от этой операции станет целым числом. Тогда решение примера с делением в столбик дробей сведется к самому простому варианту: операции с натуральными числами.

В качестве примера: 28,4 делим на 3,2:

  • Сначала их необходимо умножить на 10, поскольку во втором числе после запятой стоит только одна цифра. Умножение даст 284 и 32.
  • Их полагается разделить. Причем сразу все число 284 на 32.
  • Первым подобранным числом для ответа является 8. От его умножения получается 256. Остатком будет 28.
  • Деление целой части закончилось, и в ответ полагается поставить запятую.
  • Снести к остатку 0.
  • Снова взять по 8.
  • Остаток: 24. К нему приписать еще один 0.
  • Теперь брать нужно 7.
  • Результат умножения - 224, остаток - 16.
  • Снести еще один 0. Взять по 5 и получится как раз 160. Остаток — 0.

Деление закончено. Результат примера 28,4:3,2 равен 8,875.

Что делать, если делитель равен 10, 100, 0,1, или 0,01?

Так же как и с умножением, деление в столбик здесь не понадобится. Достаточно просто переносить запятую в нужную сторону на определенное количество цифр. Причем по этому принципу можно решать примеры как с целыми числами, так и с десятичными дробями.

Итак, если нужно делить на 10, 100 или 1 000, то запятая переносится влево на такое количество цифр, сколько нулей в делителе. То есть, когда число делится на 100, запятая должна сместиться влево на две цифры. Если делимое — натуральное число, то подразумевается, что запятая стоит в его конце.

Это действие дает такой же результат, как если бы число было необходимо умножить на 0,1, 0,01 или 0,001. В этих примерах запятая тоже переносится влево на количество цифр, равное длине дробной части.

При делении на 0,1 (и т. д.) или умножении на 10 (и т. д.) запятая должна переместиться вправо на одну цифру (или две, три, в зависимости от количества нулей или длины дробной части).

Стоит отметить, что количества цифр, данных в делимом, может быть недостаточным. Тогда слева (в целой части) или справа (после запятой) можно приписать недостающие нули.

Деление периодических дробей

В этом случае не удастся получить точный ответ при делении в столбик. Как решать пример, если встретилась дробь с периодом? Здесь полагается переходить к обыкновенным дробям. А потом выполнять их деление по изученным ранее правилам.

Например разделить нужно 0,(3) на 0,6. Первая дробь — периодическая. Она преобразуется в дробь 3/9, которая после сокращения даст 1/3. Вторая дробь — конечная десятичная. Ее записать обыкновенной еще проще: 6/10, что равно 3/5. Правило деления обыкновенных дробей предписывает заменять деление умножением и делитель — обратным числом. То есть пример сводится к умножению 1/3 на 5/3. Ответом будет 5/9.

Если в примере разные дроби...

Тогда возможны несколько вариантов решения. Во-первых, обыкновенную дробь можно попытаться перевести в десятичную. Потом делить уже две десятичные по указанному выше алгоритму.

Во-вторых, каждая конечная десятичная дробь может быть записана в виде обыкновенной. Только это не всегда удобно. Чаще всего такие дроби оказываются огромными. Да и ответы получаются громоздкими. Поэтому первый подход считается более предпочтительным.

Калькулятор в столбик для Андроид устройств станет замечательным помощником для современных школьников. Программа не только дает правильный ответ на математическое действие, но и наглядно демонстрирует его пошаговое решение. Если же вам нужны более сложные калькуляторы – можете посмотреть или же продвинутый инженерный калькулятор.

Особенности

Главной особенностью программы является уникальность расчета математических операций. Отображение процесса вычислений столбиком дает возможность школьникам более подробно с ним ознакомиться, понять алгоритм решения, а не просто получить готовый результат и переписать его в тетрадь. Эта особенность имеет огромное преимущество перед другими калькуляторами, т.к. достаточно часто в школе учителя требуют расписать промежуточные вычисления, чтобы удостовериться, что школьник производит их в уме и действительно понимает алгоритм решения задач. Кстати, у нас есть еще одна программа похожего рода – .

Чтобы начать пользоваться программой, необходимо скачать калькулятор в столбик на Андроид. Сделать это можно на нашем сайте абсолютно бесплатно без дополнительных регистраций и смс. После установки откроется главная страница в виде тетрадного листа в клетку, на котором, собственно, и будут отображаться результаты вычислений и их подробное решение. Внизу располагается панель с кнопками:

  1. Цифры.
  2. Знаки арифметических действий.
  3. Удаление раннее введенных символов.

Ввод осуществляется по тому же принципу, что и на . Все отличие состоит только в интерфейсе приложения – все математические вычисления и их результат отображаются в виртуальной ученической тетради.

Приложение позволяет быстро и правильно выполнить стандартные для школьника математические вычисления столбиком:

  • умножение;
  • деление;
  • сложение;
  • вычитание.

Приятным дополнением в приложении является функция ежедневного напоминания о домашнем задании по математике. Хотите – делайте домашки. Для ее включения следует зайти в настройки (нажать кнопку в виде шестеренки) и установить галочку о напоминании.

Достоинства и недостатки

  1. Помогает школьнику не просто быстро получить правильный результат математических вычислений, но и понять сам принцип расчета.
  2. Очень простой, интуитивно понятный интерфейс для каждого пользователя.
  3. Установить приложение можно даже на самое бюджетное Андроид устройство с операционной системой 2.2 и более поздней версией.
  4. Калькулятор сохраняет историю проведенных математических вычислений, которую можно в любой момент очистить.

Калькулятор ограничен в математических операциях, поэтому применить его для сложных расчетов, с какими мог бы справиться инженерный калькулятор, не получится. Однако учитывая назначение самого приложения – наглядно продемонстрировать учащимся младшей школы принцип расчета в столбик, считать это недостатком не стоит.

Приложение также станет отличным помощником не только для школьников, но и для родителей, которые желают заинтересовать своего ребенка математикой и научить его правильно и последовательно производить вычисления. Если Вы уже пользовались приложением Калькулятор в столбик, оставьте свои впечатления ниже в комментариях.

Деление – одна из четырех основных математических операций (сложение , вычитание , умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение . 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

    Найти сумму цифр делимого.

    Поделить на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение . В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1 . Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2 . На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4 . Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг . Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг . Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг . Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под делителем.

5 шаг . После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг . Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг *. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 - класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Примеры на деление

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение"

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение перезагрузка"

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Что такое длинное деление? [Определение, факты и пример]

Игры с длинным разделением

Разделить на 2-значные числа

Разделить 4-значные числа на 2-значные числа, при этом от деления не остается остатка. Вы начнете с оценки частных.

охватывает общий базовый учебный план 5.NBT.6Play NowРазделите на 2-значные числа с остатком

Разделите 4-значные числа на 2-значные числа. Начните с оценки частных, которые пригодятся при делении на 2-значные числа.

охватывает общий основной учебный план 5.NBT.6Играть сейчасПосмотреть все игры с разделением >>
Учитесь с помощью полной программы обучения математике K-5

Что такое длинное деление?

В математике деление в столбик - это метод, используемый для деления больших чисел на группы или части.

Деление в столбик помогает разбить проблему деления на последовательность более простых шагов. Как и во всех задачах деления, большое число, являющееся делимым, делится на другое число, которое называется делителем, чтобы получить результат, называемый частным, а иногда и остатком.

Как вы делаете деление в столбик?

Метод деления в столбик включает в себя основные математические операции.

Для деления двух чисел этим методом рисуется таблица. Делитель пишется за пределами правых скобок, а делимое - внутри. Частное пишется над чертой сверху над дивидендом.

Деление в столбик состоит из 5 шагов:

D Разделить
M Умножить
S Вычесть
B Сбить
R Повтор или остаток

Вот пример деления в столбик с четким отображением каждого шага.

Процесс начинается с деления или определения, сколько раз крайняя левая цифра делимого может делиться на делитель.

Затем результат или ответ из шага 1, который становится первой цифрой частного, умножается на делитель и записывается под первой цифрой делимого.

Вычитание производится по первой цифре делимого и записывается остаток.

Следующая цифра делимого уменьшается, а затем процесс повторяется до тех пор, пока все цифры делимого не будут сброшены и не будет найден остаток.

Как разделить десятичные дроби методом длинного деления?

Деление в столбик можно также использовать для разделения десятичных чисел на равные группы. Он выполняет те же шаги, что и при делении в столбик, а именно: деление, умножение, вычитание, уменьшение и повторение или нахождение остатка.

Вот пример деления в столбик с десятичными знаками.

Интересные факты

  • 123454321 при делении на 11111 дает частное 11111 и остаток 0.

Давайте споем!

Если нужно разделить большие числа,

нарисуйте таблицу для длинного деления сбоку.

Напишите шаги, которые будут вашим руководством,

D, M, S, B и R - Придерживайтесь долгого разделения!

Давай сделаем это!

Вместо того, чтобы показывать видеоролики для обучения полному делению или раздавать практические задания ученикам четвертого класса, приведите примеры из реальной жизни, когда они могут использовать метод длинного деления для деления.

Допустим, готовя кексы и печенье для продажи в школе, вы можете попросить ребенка подсчитать количество партий, в которых можно приготовить печенье или кексы (исходя из количества форм на подносе), если общее количество печенья и кексы требуются. Вы также можете попросить их подсчитать общее количество необходимых картонных коробок, если в каждую коробку печенья помещается 15 печенья, а в картонную коробку для кексов - 6 кексов. Попросите их вычислить, используя метод длинного деления.

Связанный математический словарь

Что такое длинное деление? - Определение и примеры - Видео и стенограмма урока

Как выполнить длинное деление

Задача на длинное деление не записывается в виде дроби или как вы могли бы написать задачу меньшего размера.Задачи, которые необходимо решить долгим путем, записываются следующим образом: делимое под скобкой деления, делитель слева от скобки и частное над скобкой.

Условия те же; есть еще делитель, делимое и частное, они просто написаны таким образом, чтобы их было легче вычислить. Чтобы решить проблему деления на столбик, вы сначала разбиваете ее на задачи деления, которые можно решить.

Давайте посмотрим на проблему 965/5.

Вам нужно разделить 5 на каждое из чисел в 965.

  1. 5 войдет в 9 один раз. 5 x 2 = 10, и это слишком много, но 5 x 1 = 5, и это сработает. Поставьте 1 над 9 (над линией), затем запишите 5 под 9. Это покажет, что 5 x 1 равно 5.
  2. Вычтите 5 из 9, чтобы получить 4, а затем уменьшите 6. 4 - это остаток от первой задачи мини-деления, а 6 - это число, которое вы будете использовать для второй задачи мини-деления.
  3. Теперь разделите 5 на 46. 5 x 45 = 9, поэтому 9 - это число, которое мы напишем сверху, а затем поместим 45 под 46.
  4. 46-45 = 1, что составляет 1 остаток.
  5. Опустите 5, чтобы завершить последнюю мини-задачу: 15/5 = 3
  6. Напишите 3 над 5 и 5 x 3 = 15.
  7. 15-15 = 0, остатка нет и проблема решена.

965/5 = 193

Примеры

Давайте рассмотрим несколько примеров.

Пример 1: 305,753 / 31

Вы также можете работать с задачами длинного деления с очень большими числами.

В этом примере 31 не будет делиться на 3, поэтому вам нужно включить следующее число, 0. Поскольку 31 также не будет делиться на 30, включите следующее число.

305/31 - первая задача мини-подразделения, которую нужно решить. После этого проблема продолжается как обычно. Когда вы закончите, мы знаем, что 305 753/31 = 9 863.

Задача 2: 186/7

Проблемы с делением на столбик не всегда решаются равномерно. Иногда будет остаток.

Остаток можно записать двумя способами. Первый такой же, как в этом примере, «R4», который сообщает вам, что существует остаток от 4. Другой способ - это дробь с остатком в качестве числителя и делителя в качестве знаменателя. Для этой проблемы это будет 4/7. В любом случае правильный вариант.

Краткое содержание урока

Деление в столбик - это метод решения сложных задач деления без использования калькулятора. Все, что для этого требуется, - это лист бумаги, карандаш и немного умственных способностей. Чтобы решить проблему деления на столбик, вы сначала разбиваете ее на задачи деления, которые можно решить. Для задач с остатком его можно записать одним из двух способов: «R» плюс оставшееся число или оставшееся число как часть дроби.

Long Division Steps: Урок для детей - видео и стенограмма урока

Постановка задач

При использовании длинного деления мы записываем уравнения с использованием скобок.Делимое (делимое число) идет внутри скобок, а делитель (число, на которое делится делимое) идет слева от скобки. Задача Алекса будет выглядеть так, с делимым (56) внутри скобок и делителем (4) вне скобок:

Как только вы начнете решать задачу, частное , ответ на задачу деления, будет помещено в верхнюю часть скобки.

Решение

Есть четыре основных шага к решению задачи длинного деления:

  1. Разделить
  2. Умножить
  3. Вычесть
  4. Опустите последнюю цифру

Давайте проработаем эти шаги с задачей Алекса с делением чисел в столбик.

1. Разделите

Начните с рассмотрения цифры, которая находится в наибольшем разряде делимого, которая всегда является первой цифрой (в данном случае это 5). Вы узнаете, сколько раз делитель переходит в разряд наибольшего разряда.Итак, в этом случае вам нужно найти, сколько раз 4 переходит в 5. Частное равно 1, и оно идет над скобкой над первой цифрой делимого:

2. Умножьте

Затем умножьте делитель вне скобки на частное в верхней части скобки. В случае Алекса это будет 4 x 1, что равно 4. Поместите ответ (4) под первой цифрой делимого:

3.Вычтите

Теперь вычтите результат умножения, полученный на последнем шаге, из первой цифры делимого. В этом случае это будет 5-4, что равно 1.

5. Отбросьте следующую цифру

До сих пор была разделена только одна цифра в делимом, поэтому другую цифру необходимо разделить. Для этого опустите его и добавьте к остатку 1:

В конце разделите это число на делитель: 16/4 = 4.Поместите этот ответ справа от частного над скобкой, и вы получите окончательный ответ: 14.

Остатки

Иногда делитель не идеально подходит для делимого, как это было в нашей последней задаче. В этих случаях проблемы с делением создают остатков, или оставшиеся числа. Давайте посмотрим на пример, и вы увидите, что шаги в основном такие же. Допустим, Алекс хочет сделать 4 стены из 38 блоков:

При попытке разделить первую цифру делимого вы заметите, что она меньше делителя.Итак, целое число нужно разделить: сколько раз 4 может перейти на 38, не переходя дальше? (Не стесняйтесь использовать свою таблицу умножения для помощи.) Ответ: 9:

Затем умножьте частное (9) на делитель (4), чтобы получить 36. 36 идет под делимое:

Вычтите это число из дивиденда:

Вы заметите, что осталось 2 штуки.Это называется остатком. Когда у вас есть остаток, вы записываете частное следующим образом:

Итак, в этом случае каждая стена будет состоять из 9 блоков, а останется 2.

Резюме урока

Длинное деление - это метод поиска ответа на сложные задачи деления путем записи каждого шага процесса. Для задач деления в столбик не забывайте следить за процессом деления, умножения, вычитания и выпадающего списка, пока каждая цифра в делимом не будет разделена.Частное - это ответ на проблему деления. Иногда делитель не идеально вписывается в дивиденд. Эти оставшиеся числа называются остатками .

Полиномиальное деление в длину | Колледж алгебры

Результаты обучения

  • Используйте деление в столбик, чтобы разделить многочлены.

В следующих двух разделах мы изучим два способа деления многочленов. Эти методы могут помочь вам найти нули многочлена, который нельзя разложить на целые числа.

Мы знакомы с алгоритмом деления в столбик для обычной арифметики. Мы начинаем с деления дивиденда на цифры, которые имеют наибольшее разрядное значение. Мы делим, умножаем, вычитаем, включаем цифру в позицию следующего разряда и повторяем. Например, разделим 178 на 3 в столбик.

Другой способ взглянуть на решение - как на сумму частей. Это должно показаться знакомым, поскольку это тот же метод, который используется для проверки деления в элементарной арифметике.

[латекс] \ begin {array} {l} \ left (\ text {divisor} \ cdot \ text {quotient} \ right) \ text {+ остаток} \ text {= divisor} \ hfill \\ \ left (3 \ cdot 59 \ right) +1 = 177 + 1 = 178 \ hfill \ end {array} [/ latex]

Мы называем это алгоритмом деления и обсудим его более формально после рассмотрения примера.

Деление многочленов, содержащих более одного члена, похоже на деление целых чисел в длинную строку. Мы можем записать полиномиальное делимое как произведение делителя и частного, добавленного к остатку.{2} -7x + 18 \ справа) -31 [/ латекс]

Мы можем идентифицировать дивиденд , делитель , частное и остаток .

Запись результата таким образом иллюстрирует алгоритм деления.

Общее примечание: алгоритм деления

Алгоритм деления утверждает, что для заданного полиномиального делимого [латекс] f \ left (x \ right) [/ latex] и ненулевого полиномиального делителя [латекс] d \ left (x \ right) [/ latex], где степень [латекса] d \ left (x \ right) [/ latex] меньше или равна степени [latex] f \ left (x \ right) [/ latex], существуют уникальные многочлены [латекс] q \ left (x \ right) [/ latex] и [latex] r \ left (x \ right) [/ latex] такие, что

[латекс] f \ left (x \ right) = d \ left (x \ right) q \ left (x \ right) + r \ left (x \ right) [/ латекс]

[латекс] q \ left (x \ right) [/ latex] - это частное, а [latex] r \ left (x \ right) [/ latex] - остаток.Остаток либо равен нулю, либо имеет степень строго меньше, чем [latex] d \ left (x \ right) [/ latex].

Если [латекс] r \ left (x \ right) = 0 [/ latex], то [latex] d \ left (x \ right) [/ latex] равномерно делится на [латекс] f \ left (x \ right) [/латекс]. Это означает, что оба [латекс] d \ left (x \ right) [/ latex] и [latex] q \ left (x \ right) [/ latex] являются факторами [латекса] f \ left (x \ right) [ /латекс].

Как сделать: для заданного полинома и бинома используйте деление в столбик, чтобы разделить полином на бином

  1. Установите задачу разделения.
  2. Определите первый член частного, разделив главный член дивиденда на главный член делителя.
  3. Умножьте ответ на делитель и запишите его под аналогичными членами дивиденда.
  4. Вычтите нижний бином из числа над ним.
  5. Принесите следующий срок дивидендов.
  6. Повторяйте шаги 2–5 до последнего члена дивиденда.
  7. Если остаток не равен нулю, выразите дробью, используя делитель в качестве знаменателя.{2} -8x + 15- \ frac {78} {4x + 5} [/ латекс]

    Внесите свой вклад!

    У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

    Улучшить эту страницуПодробнее

    Длинное деление с десятичными знаками Рабочие листы

    Десятичные рабочие листы с длинным делением с десятичными знаками. Ниже представлены шесть версий нашей таблицы по математике оценок по полному делению с десятичными знаками. и дивиденды, и делители являются десятичными числами. ответы следует округлять до десятичных знаков. эти рабочие листы являются файлами.

    аналогично делить целые числа на десятичные дроби делить десятичные числа на целые числа (-) с округлением. Деление в столбик с десятичными знаками - это тонкое расширение обычных задач деления в столбик, и это навык, который стоит практиковать. Эти рабочие листы с длинным делением содержат наборы задач разного уровня сложности, все с проблемами десятичного деления.

    в то время как ранние наборы рабочих листов имеют проблемы с длинным делением с различным количеством цифр, более поздние наборы сосредоточены на задачах десятичного деления на длинные, которые связаны с деньгами, поэтому значения, которые в основном сосредоточены на десятичных частных в сотых разрядах.

    Рабочие листы деление десятичных знаков математической степени деление десятичных знаков на десятичные дроби. математические рабочие листы деление десятичных знаков на десятичные дроби или десятичные дроби. Ниже приведены шесть версий нашей таблицы по математике оценок по полному делению больших десятичных чисел на десятичные или десятичные дроби.

    Эти листы представляют собой файлы. аналогичное деление десятичных знаков на десятичные дроби деление десятичных знаков на десятичные дроби. Разделите целое или десятичное число на десятичное с помощью длинного деления. делить десятичные дроби на десятичные, делимое меньше делителя - цифры.делить десятичные дроби на десятичные, делимые различаются еще делителем - цифрами.

    десятичные дроби делятся на десятичные, которые имеет делитель - десятичные цифры. делить десятичные дроби на десятичные, в общем. Деление с десятичными частными. Рабочие листы. Fluxbb.info. Длинное деление с десятичными знаками. (Видео) khan academy детский сад математика.

    Деление в столбик с десятичными знаками. Рабочие листы оценивают умножение и деление. листы с длинным делением без остатков lesrosesdor.info. рабочие листы с длинным делением с десятичной оценкой результатов.деление листов оценки. Десятичные дроби рабочих листов деление на десятичные числа.

    ниже - это шесть версий нашей таблицы по математике оценок, посвященной делению больших десятичных чисел в столбик на десятичные дроби. эти рабочие листы являются файлами. аналогичное деление десятичных знаков на десятичные дроби деление десятичных знаков на десятичные дроби. Рабочие листы с длинным делением Длинное деление - важный математический навык, который обычно вводится в первом классе или классе, в зависимости от того, насколько свободно учащиеся владеют основными фактами о делении.

    1. Рабочий лист Математика с длинным делением Десятичная диаграмма с областью Скачать бесплатные десятичные дроби Рабочий лист

    [источник] [скачать]

    Забудьте загружать и использовать бесплатные рабочие листы с длинным делением. вопросы рассуждения с длинным разделением. Как только дети будут уверены в своих вопросах с долгим делением, можно будет ввести логические упражнения, такие как деление в столбик с пропущенными цифрами или выявление ошибок, переходя, в конечном итоге, к сформулированным задачам с длинным делением.

    2. Генератор десятичных десятичных таблиц, помогающий математике. Рабочие листы с дробным делением десятичных дробей

    [источник] [скачать]

    S. Алгоритм деления в столбик. На наш взгляд, гораздо более простая стратегия состоит в том, чтобы изначально игнорировать десятичные дроби. Теперь я могу написать это как. Я мог бы написать десятичную дробь прямо здесь, но не собираюсь менять тот факт, что это только что целое число.

    3. Бесплатные распечатанные рабочие листы для деления. Рабочий лист с десятичными числами. Длинные ответы. Математические задачи. Сложение по астрономии. Перенос десятичных знаков.

    [источник] [скачать]

    Одноразрядный делитель делит десятичные числа на десятичные числа целого числа.Как сделать анимированный мини-урок с делением столбиком из урока, помогающего с математикой, является одним из крупнейших поставщиков математических листов и генераторов на платформе. Коллекция идей для краткости.

    4. Рабочие листы с десятичными числами с длинным делением Занятия в детском саду Книги по основам математики Порядок заданий Проекты по математике Оценка школьников

    [источник] [скачать]

    В этом упражнении с длинным делением учащиеся решают задачи с длинным делением, в которых дивиденды и делители имеют десятичные знаки.Всего ученики решают задачи. Эта прогрессивная серия бесплатных рабочих листов с повторяющимися десятичными знаками поможет вашим ученикам практиковать деление в столбик и овладеть искусством определения и записи повторяющихся десятичных знаков.

    5. Бесплатные рабочие листы с длинным делением Десятичные дроби Справочный лист

    [источник] [скачать]

    Деление с двузначными делителями Рабочие листы для печати расширяют ваши знания о делении с помощью этих увлекательных математических листов.Ученики математики могут практиковать деление с двузначными делителями, выполняя классические вычисления деления, находя частные и решая многозначные математические задачи.

    6. Делить десятичные дроби Рабочий лист для решения задач Планета успеваемость Урок Планета с длинным делением Рабочие листы

    [источник] [скачать]

    Листы с длинным делением сортируют с десятичными знаками без остатка. Рабочие листы десятичных дробей от сравнения и упорядочивания десятичных дробей до округления и операций с десятичными числами.основная причина завершения десятичного деления таким образом - получить десятичную дробь в правильном месте при использовании u.

    7. Деление рабочих листов Десятичные десятичные знаки Год Домашние задания Оценка вопросов по математике Длинные 5 цветных чисел Взрослые Образец теста

    [источник] [скачать]

    Эта игра по математике с длинным делением для оценок содержит различные вопросы, содержащие десятичные дивиденды и целые делители чисел. включенные частные проходят через тысячные места.вопросы в этом учебном ресурсе по разделу представлены как с несколькими вариантами ответов, так и с открытым ответом.

    8. Рабочий лист для длинных делений. Рабочий лист для четвертых классов.

    [источник] [скачать]

    Деление десятичных знаков и округление, словесные задачи по умножению и делению десятичных знаков и т. Д. Калькулятор деления на столбик с пошаговой работой для учащихся первых классов, классов и классов, позволяющий проверить результаты задач деления на столбики с остатком или без него.

    9. кг. Игра Оценка по математике Рабочие листы Длинное деление Десятичные числа Домашнее задание Бесплатное учебное пособие Игры 5-й год 6 Базовый

    [источник] [скачать]

    . при делении десятичных чисел переместите десятичную точку в делителе (делении числа на) к правому концу делителя. затем переместите. Секрет вычисления длинного деления до десятичных знаков заключается в возможности добавлять нули после десятичной точки.

    10.Деление десятичных знаков Размеры Разделение Рабочие листы Лист с ответами Рабочий лист Решение математической задачи Определение целого числа Оценка по алгебре Вопросы Длинный

    [источник] [скачать]

    Вы можете создавать простые десятичные задачи для решения с помощью математических вычислений, рабочих листов для умножения на или, задач десятичного деления в столбик, проблем с отсутствующими числами и т. Д. Длинное деление - однозначный делитель и двузначное частное без остатка (просмотры на этой неделе) Длинное деление - однозначное деление и трехзначное частное без остатка (просмотры на этой неделе) факты деления без нулей (просмотры это неделя) -значное деление в столбик с остатками и шагами, указанными в ключе ответа (просмотры на этой неделе) деление в столбик на кратные с.

    11. Математика с десятичной базой Числовые значения Десятичные дроби Рабочие листы Деятельность в детском саду Оценка успеваемости по математике Задания Изменение рабочего листа

    [источник] [скачать]

    Таблица типов ресурсов используется класс, класс, класс, возрастной диапазон -. Создавайте неограниченное количество листов для деления в столбик (оценки -), в том числе с -цифровыми и -цифровыми делителями. рабочие листы могут быть выполнены в любом формате, и их легко распечатать.вы также можете настроить их, используя генератор ниже.

    рабочие листы на этой странице разделены на три основных раздела. Эти рабочие листы предназначены для детей в качестве вводных в рабочие листы с длинным делением с десятичными числами и с простыми таблицами умножения (например, и) для детей, которые могут не знать все свои таблицы умножения. Плюс миллиметровая бумага в клетках помогает им укреплять свои тренировки организовал и п. Рабочие листы по математике с десятичным делением. деление листов с десятичными знаками для оценки.Бесплатные рабочие листы с делением в столбик с десятичными знаками - фантастические, забавные и совершенно бесплатные математические рабочие листы должны иметь возможность решать математические задачи по-разному.

    Математика

    - это, в конце концов, не что иное, как числовое выражение нескольких самых простых вопросов, сколько денег у вас осталось, если i. Этот комплексный комплект рабочих листов с длинным делением не является подготовительным и включает в себя разные темы, каждая с уровнями для общего количества дифференцированных рабочих листов, включая правила делимости, изменение остатков на дроби и замену остатков на десятичные.

    12. Десятичное деление с длинным делением Дивидендный лабиринт Практика математики Ms Decimals Рабочий лист

    [источник] [скачать]

    Пример такой же, как. мы можем добавить сколько угодно нулей после десятичной точки без изменения числового значения. мы будем использовать пример ниже. он работает с точностью до одного десятичного знака. Этот рабочий лист с десятичным делением на столбики подходит для - класса.

    13. Бесплатные практические задания по математике. Рабочие листы с делением дробей Den Long Decimals

    [источник] [скачать]

    Рабочие листы для супер учителей -.Деление superteacherworksheets.com с десятичными знаками позволяет найти частные. а. б. c. d ... деление обычно помещается десятичная точка в частном непосредственно над новым размещением десятичной точки в делимом. В рабочих листах с десятичным делением десятичные числа делятся на десятичные числа целых чисел.

    14. Умножение цифр Рабочий лист по математике Рабочие листы Деление на длинное умножение Щенок Игра Алгебра покупок 1 Решатель ответов Бесплатный тест Десятичные числа

    [источник] [скачать]

    Предоставлено рабочее место.деление десятичных знаков. кроме стандартных практических задач, добавлено несколько специальных рабочих листов по ментальному разделению. Рабочие листы с длинным делением Education.com помогают детям решать задачи с длинным делением, которые иногда могут показаться пугающими для маленьких учеников. Наши бесплатные ресурсы дают детям необходимую им практику, помогая им усовершенствовать конкретный метод, необходимый для решения этих новых задач.

    15. Стратегия дифференциации Рабочие листы с делением десятичных дробей и столбиками

    [источник] [скачать]

    Делите до тех пор, пока остаток не станет равен нулю или пока в вашем ответе не будет достаточно десятичных знаков.вы также можете остановиться, если остаток повторяется, потому что это указывает на то, что ваш ответ является повторяющимся десятичным числом. Добро пожаловать в длинное деление - двузначный делитель и четырехзначный делимый с десятичным частным (a) математический рабочий лист со страницы рабочих листов деления в math-Drills.

    ком. эта таблица по математике была создана - и ее просматривали раз на этой неделе и раз в этом месяце. его можно распечатать, загрузить или сохранить и использовать в вашем классе, домашней школе или другой образовательной среде.Генератор десятичных разделительных листов.

    сорта k- рабочие листы. (из рабочего листа), как делать длинное деление (анимированный мини-урок) (из урока), помогая с математикой, является одним из крупнейших поставщиков математических рабочих листов и генераторов на платформе. мы ежегодно предоставляем высококачественные рабочие листы по математике более чем миллиону учителей.

    Каждый набор рабочих листов представляет все более сложные проблемы с делением на столбик, хотя ни один из рабочих листов в этом разделе не имеет проблем с делением остатков или десятичных знаков.Первые два набора рабочих листов с длинным делением содержат две задачи о длинном делении, которые начинаются с более простых ответов.

    16. Десятичное деление Повторяющиеся десятичные дроби Длинные рабочие листы

    [источник] [скачать]

    Вы можете использовать версию для печати или цифру. Привлекайте своих студентов с помощью этих самопроверяющихся таблиц с делением qr-кода и десятичных знаков, а студенты любят проверять свою работу на своих устройствах. включает в себя рабочие листы с полным делением в столбик с проблемами десятичных дробей и сопроводительный QR-код, который показывает ответ.

    QR-коды позволяют. предметы. Деление десятичных знаков. Практикуйте математические задачи с делением в столбик с десятичными знаками в делителе дивиденда. рабочие листы с дробями. на этой странице представлены основные дроби, дроби набора, дроби сравнения и упорядочения и многое другое. полный индекс рабочего листа математики.

    просмотреть список всех заданий по математике, имеющихся на листах супер-учителя. Разделение десятичных листов включает деление десятичных знаков на целые числа или десятичные дроби. ответы могут быть целыми числами, десятичными знаками в конце или повторяющимися десятичными знаками.указания относительно округления предоставленных ответов, где это необходимо.

    получите мгновенный доступ к некоторым из этих листов бесплатно. Этот тест и рабочий лист дают возможность проверить и повторить то, что вы знаете о делении в столбик с десятичными знаками. Практикуйте шаги деления в столбик для решения задач, в которых используется десятичная дробь. Вставьте десятичную точку в поле частного (ответ) точно над десятичной точкой в ​​числе под полосой деления.

    17. Шаблоны рабочих листов с бесплатным разделением образцов Ms Word Decimals Рабочие листы Долгое развлечение Таблицы по математике для четвертого класса Практика

    [источник] [скачать]

    Рабочие листы

    Division сортируются с остатками в виде десятичных знаков.рабочие листы с длинным делением с десятичными ответами без остатков. листы деления. Рабочие листы с десятичными знаками пересмотренная страница деления десятичных чисел - это три способа увидеть проблемы с делением, все они означают одно и то же.

    18. Рабочие листы с делением десятичных дробей на длинное деление

    [источник] [скачать]

    Итак, теперь мы готовы выполнить некоторое деление в столбик, а именно деление на целое число. Вы можете сказать, подожди, у меня все еще есть десятичная дробь, но ладно, я посмотрю это через секунду.Этот универсальный генератор создает рабочие листы для сложения, вычитания, умножения и деления десятичных знаков для оценок -.

    19. Листы работы с десятичными дробями для почтового ящика

    [источник] [скачать]

    Создайте работу с шагами для by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by, by by, by, by, by, by, by, by, by, by, by, by, by, by by, by, by, by, by, by, by, by, by, by, by, by, by by by, by, by, by, by, by, by, by, by, by, by цифровое деление упражнений или домашние упражнения. Эксклюзивная страница с вычитанием десятичных знаков включает более рабочих листов в разных вариантах.умножение десятичных знаков. Рабочие листы десятичного умножения включают умножение десятичного числа на целые числа или десятичные числа.

    20. Рабочие листы по десятичным числам в длинном делении

    [источник] [скачать]

    Каждый рабочий лист содержит задачи вертикального деления на столбик. учащиеся будут решать задачи, добавляя нули, пока не будет обнаружен повторяющийся десятичный образец. Добро пожаловать в раздел умножения и деления десятичных знаков на tutorialspoint.com. на этой странице вы найдете рабочие листы по умножению и делению десятичных знаков, умножению и делению десятичных знаков на целые числа, умножению и делению десятичных знаков на степени десяти и степени.

    Эти листы с длинным делением помогут постепенно укрепить уверенность, когда они будут готовы. Рабочие листы по математике с десятичным разделением. математические рабочие листы деление десятичных знаков. Вводные рабочие листы с полными делениями, листы с полными делениями с остатками и без, полные деления с десятичными знаками.все эти листы с длинным делением содержат подробные, развернутые ответы. графические дроби в столбик. отличное введение в дроби с использованием круговой графики. студентам предлагается определить числовые формы дробей от. Привлекайте своих студентов с помощью этих самопроверяющихся таблиц с делением qr-кода и десятичных знаков, а студенты любят проверять свою работу на своих устройствах. включает в себя рабочие листы с полным делением в столбик с проблемами десятичных дробей и сопроводительный QR-код, который показывает ответ.QR-коды позволяют. Добро пожаловать на страницу деления десятичных знаков на разные десятичные с различными размерами частных (а) математический лист со страницы рабочих листов десятичных дробей на math-Drills. com. эта таблица по математике была создана - и просматривалась раз на этой неделе и раз в этом месяце. он может быть распечатан, загружен или сохранен и использован в вашем классе, домашней школе или другой образовательной среде, чтобы помочь. Деление с десятичными остатками практикует рабочие листы для деления с дробными результатами, выраженными в десятичной дроби, в том числе рабочие листы с длинным делением с сотыми долями (особенно подходят для обучения делению денежных сумм).

    Эффективные стратегии обучения многозначному умножению

    Многозначное умножение - сложная концепция для обучения. Давно прошли те времена, когда мы учили одному методу, например, долгому умножению, и просто * надеемся *, что все наши ученики поймут и смогут эффективно использовать этот метод. Сегодня мы осознаем важность более стратегического обучения умножению многозначных чисел. Это гарантирует, что каждый ученик в вашем классе сможет в некотором роде добиться успеха.Это также гарантирует, что знания студентов будут основаны на стратегии, и что они действительно ПОНИМАЮТ процесс многозначного умножения.

    Теперь, прежде чем я начну говорить о некоторых методах многозначного умножения, я хочу сообщить вам, что у меня есть бесплатный мини-курс по этой теме - Обучение многозначному умножению и делению для НАСТОЯЩЕГО понимания . Если вы готовы, наконец, разработать план успеха учеников, обязательно приходите! РЕГИСТРАЦИЯ ЗДЕСЬ.

    В качестве альтернативы, если вы ищете ресурс, где вся работа сделана за вас, вас может заинтересовать Станция многозначного умножения, где учащиеся работают над различными стратегиями в своем собственном темпе, осваивая каждую из них, как они идти. Стратегии интегрированы стратегическим образом, что позволяет учащимся постепенно расширять свое понимание. См. Станцию ​​многозначного умножения ЗДЕСЬ.

    Итак, с чего начать обучение многозначному умножению?

    Важно начинать со стратегий, которые помогут студентам мысленно решать многозначные уравнения.Вместо того, чтобы сразу переходить к длинному умножению или эффективной альтернативе, начните со следующего:

    1. Коммутативные и ассоциативные свойства . Прежде всего, ученикам важно помнить об этих свойствах. Коммутативное свойство гласит, что порядок факторов не меняет продукт. Например, 4 × 3 и 3 × 4 равны 12. Ассоциативное свойство утверждает, что факторы могут быть сгруппированы по-разному. Например, (7 × 2) x5 дает то же произведение, что и (2 × 5) x7.Эти свойства помогают учащимся понять, что они могут манипулировать уравнениями, чтобы их было легче решать.

    2. Использование факторов. Это отличный способ научить студентов манипулировать числами, чтобы упростить решение уравнения. Когда мы учим многозначное умножение, наша цель не всегда - как можно быстрее получить правильный ответ. Иногда наша цель - уметь творчески мыслить, когда дело касается чисел. Это один из таких случаев. Мы могли бы взять уравнение 4 × 15 и разбить 15 на множители 3 и 5.Теперь у нас есть это уравнение: 4x3x5. Теперь мы можем решить это так: (4 × 3) x5 -> 12 × 5 -> 60. Это просто, чтобы показать, что существует не только один правильный способ решить это уравнение.

    3. Умножение на 10, 100 и 1000, а также на кратные 10, 100 и 1000. Хотя я сгруппировал эти две концепции вместе для целей этого сообщения в блоге, этому следует учить медленно и осторожно. , кусочек за кусочком. Когда вы преподаете эту концепцию, важно сосредоточиться на правилах разложения, прежде чем обучать трюкам, таким как трюк с добавлением нулей.Например, когда учащиеся сталкиваются с уравнением 45 × 100, они должны понимать, что значения разряда увеличиваются на 2 разряда, чтобы получить произведение 4500. Аналогичным образом, при умножении такого уравнения, как 3 × 1000, значения разряда увеличиваются на 3 мест, где можно заработать 3000. После того, как учащиеся усвоят эту концепцию, мы можем научить их, что, когда в множителях есть 2 нуля, мы добавляем 2 нуля к продукту. Имейте в виду, что этим трюкам следует обучать только ПОСЛЕ того, как учащиеся приобретут отличное понимание математики, лежащей в основе концепции.

    4. Разделение номеров. Это одна из самых полезных математических стратегий в уме. Это включает в себя разбиение одного из факторов, умножение на группы, а затем сложение этих групп вместе. Вот пример: в этом примере мы разбиваем 12 на 10 и 2, а затем умножаем их на части. Таким образом, 12 × 30 становится (10 × 30) + (2 × 30). Решить это намного проще!

    Мы также можем использовать эту стратегию для умножения больших чисел, например 103 × 9. Мы можем разбить 103 на 100 и 3, а затем умножить на части, например: (100 × 9) + (3 × 9).

    5. Метод окна / окна. Мне нравится метод «окно / окно», потому что он использует расширенную форму каждого фактора, что делает его отличной стратегией для усиления концепций определения числа. Чтобы использовать эту стратегию, мы рисуем прямоугольник (количество столбцов и строк зависит от количества цифр в множителях), а затем записываем развернутые формы множителей сверху и сбоку. Затем мы умножаем каждую часть и складываем части, когда закончим. Если вы хотите получить более подробное руководство по этой стратегии, см. ЭТО сообщение в блоге, которое также включает видеоурок.

    6. Частичные продукты. Это одна из самых важных стратегий, которую следует преподавать как альтернатива долгому умножению. В частичных произведениях уравнение строится так же, как и при традиционном долгом умножении, но способ умножения отличается. Например, для уравнения 35 × 3 мы сначала умножаем 3 × 5, чтобы получить 15. Затем мы умножаем 3 × 30, чтобы получить 90. Обратите внимание, что мы умножили на ТРИДЦАТЬ, а не на три. Это потому, что 3 представляет 30. Это дает нам 90. Теперь мы складываем 15 и 90 вместе, чтобы получить 105.Если вы хотите получить более подробное руководство по этой стратегии, см. ЭТО сообщение в блоге, которое также включает видеоурок.

    Стратегии, которые я описал выше, являются САМЫМИ важными для обучения многозначному умножению. Все эти стратегии делают упор на понимание чисел и гарантируют, что учащиеся действительно понимают, что означают числа в каждом уравнении. Но как насчет таких стратегий, как традиционное длинное умножение?

    Это спорная тема.Некоторые учителя считают, что наше обучение должно быть сосредоточено ТОЛЬКО на чувстве числа, чтобы мы не учили стратегии, не фокусирующиеся на понимании числа. Эти учителя склонны использовать такие стратегии, как частичные произведения в течение всего года, как очень эффективную альтернативу традиционному долгому умножению. Другие учителя считают, что мы должны учить так, как умножение преподавалось много лет назад. Тогда это работало, так почему бы не работать сейчас ?! Эти учителя, как правило, больше сосредотачиваются на таких стратегиях, как традиционное длинное умножение, и меньше на более современных методах, таких как коробка / окно или частичные произведения.

    Я здесь не для того, чтобы указывать вам, какой путь лучше 🙂 Это зависит от вас и ваших учеников. Однако я скажу вам свое личное мнение. Лично я не склонен впадать в крайности. Я очень верю в стратегии, способствующие пониманию чисел. Однако я также считаю, что для НЕКОТОРЫХ ваших учеников есть место традиционным методам. Здесь тебе придется быть судьей. Если у вас есть ученики, которые борются с многозначным умножением, вы, вероятно, предпочтете позволить им сосредоточиться на частичных продуктах и ​​коробке / окне и оставить все как есть.Зачем вносить еще больше путаницы? Они могут быть очень успешными с этими стратегиями. ОДНАКО, у вас могут быть ученики, которые прекрасно понимают, чему вас учили, и готовы к новым испытаниям! Эти ученики могут преуспеть с другими методами, менее ориентированными на числа, поскольку они уже хорошо разбираются в математических концепциях. Для этих студентов я собираюсь рассказать о паре других стратегий.

    Эти следующие стратегии менее ориентированы на числа, но они могут быть интересным способом умножения для тех учащихся, которые готовы принять вызов.

    1. Решеточное умножение. Это действительно забавный метод, который включает рисование сетки и использование этой сетки для организации чисел. Некоторые учителя считают, что ученикам, использующим этот метод, легче носить, потому что числа расположены диагональными рядами, поэтому легче увидеть, где их нужно добавить. Для объяснения этой стратегии требуется время, поэтому, пожалуйста, просмотрите ЭТО сообщение в блоге, которое также включает видеоурок по стратегии.

    1. Деление пополам и удвоение. Это действительно изящная стратегия умножения на числа вроде 5, 10, 25, 50 и т. Д. Все, что вам нужно сделать, - это разделить один множитель пополам, а второй - удвоить, чтобы изменить уравнение и облегчить его решение. Например, если у нас есть уравнение типа 25 × 14, мы могли бы удвоить 25, чтобы получить 50, и разделить 14 пополам, чтобы получить 7. Теперь у нас есть 50 × 7, что НАМНОГО проще решить! Мы можем очень быстро вычислить это мысленно и получить результат 350. Для этой стратегии ученики должны понимать, что она хорошо работает только с определенными числами, и им потребуется много практики, чтобы знать, с какими уравнениями она хорошо работает.
    2. Традиционное длинное умножение. Это подводит нас к традиционному длинному умножению. Я не собираюсь объяснять, как это сделать, потому что я думаю, что большинство из нас уже это знает, но этому можно научить студентов, которые готовы к дополнительным испытаниям.

    Если вам нужна дополнительная поддержка по этим стратегиям, я рекомендую записаться на мини-курс «Стратегии многозначного умножения и деления». Это займет всего около часа, и вы уйдете с планом действий по решению проблемы умножения и деления многозначных чисел в своем классе.

    Удачного дня,

    Шелли

    Дислексия: Освоение математики | Обучение на дому с дислексией

    Ваш ребенок с дислексией борется с математикой? Вот несколько советов, которые помогут вам научить математику своих учеников с дислексией - так что она приживается.

    Меня часто спрашивают, как научить детей с дислексией математическим фактам, чтобы они прижились.

    Хотя термин «дислексия» относится к неспособности читать ( dis = плохой или неадекватный и lexia = слова или язык ), он влияет и на другие области обучения.

    Математика - интересный предмет, поскольку он требует концептуального, логического и пространственного мышления - всех областей, в которых правый мыслитель с дислексией выделяется. Математика также требует аккуратности, точности и эффективных вычислительных навыков - областей, в которых правополушарный мыслитель с дислексией борется.

    Концептуально эти дети разбираются в математике, и это хорошо. Один из отличительных признаков дислексии - интеллект выше среднего с сопутствующей {и озадачивающей} борьбой за изучение определенных предметов. Одно из таких направлений - механическое запоминание математических фактов. У меня есть хорошие новости! Так же, как и в случае с чтением, наши дети могут усвоить математические факты, задействовав свой визуальный мозг и используя некоторые творческие методы, адаптированные к их уникальному стилю обучения. Они также могут научиться организовывать свое мышление и письменную работу, чтобы более длительные вычисления не превратились в полудневный марафон слез и разочарований.

    Преподавание математических концепций

    Сложение, вычитание, умножение, деление, дроби и десятичные знаки. Для понимания этих математических концепций требуется определенное количество зрелых рассуждений.

    При обучении детского сада пониманию концепции чисел мы начинаем с того, что связываем это понятие с чем-то реальным. Когда он начинает учиться считать, касаясь предметов и манипулируя ими, понятие чисел, их символов и их значения становится ясным или конкретным.

    Итак, для старшего ребенка очень важно заполучить предметы, чтобы они могли понять математические концепции.Практическое обучение помогает учащимся понять, почему стоит за математическими концепциями.

    Одна из лучших программ для обучения математике юных дислексиков и учеников с зрительным восприятием - Math-U-See . От сложения и вычитания до дробей и десятичных дробей программа поставляется с манипуляторами, которые иллюстрируют изучаемую концепцию.

    Построив задачу с помощью манипуляторов, произнеся уравнение, а затем записав задачу, ученик использует три режима обучения; кинестетический, слуховой и зрительный.

    Стратегия в нашем доме всегда заключалась в том, что ребенок создает проблему с помощью манипуляторов каждый раз, пока концепция не станет ясной. Когда концепция ясна, манипуляторы больше не нужны.

    У одних детей это занимает больше времени, чем у других. Ничего страшного - они учатся так.

    Изучение математических фактов при дислексии

    Это подводит меня к вопросу, которого вы все ждали… как закрепить эти математические факты ?!

    Все мы помним те временные математические тесты фактов с листом крошечных математических задач, которые мы должны были решить как можно быстрее, чтобы подтвердить свой уровень мастерства.Пытки для ученика, страдающего дислексией.

    Почему? Потому что дислексический мозг борется с низкой рабочей памятью. Если вы какое-то время учили ребенка с дислексией, вы знаете, о чем я говорю.

    Однажды вы научите концепции. Кажется, они довольно хорошо с этим справляются. На следующий день вы пересматриваете ту же концепцию, и это как если бы вы учили ее впервые! Какие? Как тут не вспомнить? Мы уже говорили об этом - вставьте здесь преувеличенно большое количество - раз!

    Механическое запоминание - не сильная сторона ума с дислексией.Так как же нам помочь им усвоить математические факты?

    Используйте сильные стороны зрения

    Используйте манипуляторы, даже повседневные предметы или пакетный учебный план, например Math U См. , и пусть ваши дети будут трогать и изучать математику. Пусть ваши дети увидят закономерности подсчета пропусков на 2, 5, 10 секунд, построив их из математических блоков или закрасив 100-секундную диаграмму.

    Позвольте им прикоснуться к математическим понятиям. Как только они поймут, почему, все остальное встанет на свои места. Быстрый поиск в Интернете даст множество практических математических идей.

    Другая визуальная стратегия - использовать изображения для запоминания математических фактов. Продукты Citycreek основаны на визуальном представлении и содержат таблицы умножения и дополнительные программы с использованием изображений, рассказов и песен. Идеально подходит для учеников с высокой степенью визуального восприятия.

    Использовать музыку или песни

    Все мои ученики средней и старшей школы развили навыки компенсации за возможность доступа к математическим фактам во время более длительных вычислений.

    Одним из методов, который они использовали, был метод, которому они научились в 1-м и 2-м классах.Пропустить подсчет. Сначала они узнали об этом, послушав очень симпатичный компакт-диск со счетчиком пропусков, выпущенный Math U See.

    Хотя они усвоили большую часть своих фактов к 8-му классу (длинное деление заставит их!}, Они всегда могут получить доступ к этой слуховой памяти о пропуске счета, чтобы найти ответ.

    Кстати: мы узнали много фактов из других предметов через песню. География, наука, грамматика и история - лишь несколько примеров.

    Что делать, если они не усвоили математические факты, а их учебная программа все равно продвигается вперед?

    В нашей домашней школе мы основаны на мастерстве.Никто не двинется дальше, пока не усвоит материал. Однако, если ребенок концептуально понимает математическую задачу, но испытывает затруднения из-за медленных вычислительных навыков, я даю им таблицу математических фактов, позволяю им взглянуть на нее и приступать к делению в столбик!

    Обман, говорите? Если ребенок в нашем доме плохо знает свои математические факты, он должен выбрать один метод практики каждый день и практиковать его в течение 10-15 минут, пока он не перестанет нуждаться в «шпаргалке».

    Ресурсы для преподавания математики

    Наконец, прежде чем этот пост станет окончательным списком , мы рекомендуем , вот некоторые ресурсы:

    Math U См.

    Учебная программа по математике для K-12.Обучает математике «почему» с помощью манипуляторов.

    Сити-Крик

    Продукты

    City Creek основаны на визуальном представлении и содержат таблицы умножения и дополнительные программы с использованием изображений, рассказов и песен.

    Таймс Сказки

    Обучает математике, создавая глупые (и запоминающиеся) истории с числами в качестве символов. Доступны варианты загружаемого видео или видео на DVD. Наши дети обожают эту программу!

    Математика

    Практический обучающий инструмент, который обучает стратегиям выяснения математических фактов.

    Пой и учись

    Веб-сайт, полный аудиоресурсов для использования по всем предметам.

    Полезные веб-сайты:

    Дайан Крафт

    У Дайанн Крафт есть множество идей и предложений по обучению правополушарных учеников.

    Крис Вудин - Landmark School

    У Криса Вудина есть множество практических идей для понимания математических концепций. Много информации по математике и правому полушарию мозга.

    Донна Янг

    Множество бесплатных распечатываемых листов по математике.

    Академия Кана

    Миллионы, да миллионы обучающих видео по всем предметам от математики и естественных наук до информатики и подготовки к экзаменам. Отличный ресурс, когда дети этого не понимают.

    И, конечно же, после 3-го класса нам нравятся учебники по математике. Прочтите мой полный обзор, щелкнув изображение ниже:

    Получите образование

    Если вы хотите узнать о дислексии и о том, как обучать, поощрять и расширять возможности своих детей с дислексией, вы попали в нужное место.

    Для получения дополнительной информации о том, как начать домашнее обучение вашего ребенка с дислексией, рассмотрите возможность загрузки моей бесплатной электронной книги, в которой рассказывается о таких вещах, как понимание стилей обучения и методов обучения, о том, как создать благоприятную учебную среду и расписание или как ставить цели и все это делать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *