Карточки 2 класс математика задачи в 2 действия: Карточки с задачами для 2 класса | Материал по математике (2 класс) по теме:
Все формулы по физике за 7 класс с пояснениями — таблица и шпаргалки
Шпаргалки по физике за 7 класс
В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.
Скачать шпаргалку со всеми формулами и определениями по физике за 7 класс (мелко на одной странице).
Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Измерение физических величин
Измерением называют определение с помощью инструментов и технических средств числового значения физической величины. Результат измерения сравнивают с неким эталоном, принятым за единицу. В итоге значением физической величины считается полученное число с указанием единиц измерения. |
В курсе по физике за 7 класс изучают правила измерений с использованием приборов со шкалой. Если цена деления шкалы неизвестна, узнать ее можно с помощью следующей формулы:
ЦД = (max − min) / n, где ЦД — цена деления, max — максимальное значение шкалы, min — минимальное значение шкалы, n — количество делений между ними.
Вместо максимального и минимального можно взять любые другие значения шкалы, числовое выражение которых нам известно.
Выделяют прямое и косвенное измерение:
при прямом измерении результат можно увидеть непосредственно на шкале инструмента;
при косвенном измерении значение величины вычисляется через другую величину (например, среднюю скорость определяют на основе нескольких замеров скорости).
Для удобства и стандартизации измерений в 1963 году была принята Международная система единиц СИ. Она регламентирует, какие единицы измерения считать основными и использовать для формул. Обозначения этих единиц также учат в программе по физике за 7 класс.
Механическое движение: формулы за 7 класс
Механическое движение — перемещение тела в пространстве, в результате которого оно меняет свое положение относительно других тел. Закономерности такого движения изучают в рамках механики и конкретно ее раздела — кинематики. |
Для того, чтобы описать движение, требуется тело отсчета, система координат, а также инструмент для измерения времени. Это составляющие системы отсчета.
Изучение механического движения в курсе по физике за 7 класс включает следующие термины:
Перемещение тела — минимальное расстояние, которое соединяет две выбранные точки траектории движения.
Траектория движения — мысленная линия, вдоль которой перемещается тело.
Путь — длина траектории тела от начальной до конечной точки.
Скорость — быстрота перемещения тела или отношение пройденного им пути ко времени прохождения.
Ускорение — быстрота изменения скорости, с которой движется тело.
Равномерное движение — механическое движение, при котором тело за любые равные промежутки времени проходит одно и то же расстояние. |
Формула скорости равномерного прямолинейного движения:
V = S / t, где S — путь тела, t — время, за которое этот путь пройден.
Формула скорости равномерного криволинейного движения:
где S1 и S2 — отрезки пути, а t1 и t2 — время, за которое был пройден каждый из них.Единица измерения скорости в СИ: метр в секунду (м/с).
Формула скорости равноускоренного движения:
V = V0 + at, где V0— начальная скорость, а — ускорение.
Единица измерения ускорения в СИ: м/с2.
Сила тяжести, вес, масса, плотность
Формулы, понятия и определения, описывающие эти физические характеристики, изучают в 7 классе в рамках такого раздела физики, как динамика.
Вес тела или вещества — это физическая величина, которая характеризует, с какой силой оно действует на горизонтальную поверхность или вертикальный подвес. |
Обратите внимание: вес тела измеряется в ньютонах, масса тела — в граммах и килограммах.
Формула веса:
P = mg, где m — масса тела, g — ускорение свободного падения.
Ускорение свободного падения возникает под действием силы тяжести, которой подвержены все находящиеся на нашей планете тела.
g = 9,806 65 м/с2 или 9,8 Н/кг
Если тело находится в покое или в прямолинейном равномерном движении, его вес равен силе тяжести.
Fтяж = mg
Но эти понятия нельзя отождествлять: сила тяжести действует на тело ввиду наличия гравитации, в то время как вес — это сила, с которой само тело действует на поверхность.
Плотность тела или вещества – величина, указывающая на то, какую массу имеет данное вещество, занимая единицу объема. Плотность прямо пропорциональна массе и обратно пропорциональна объему. |
Формула плотности:
ρ = m / V, где m — масса тела или вещества, V — занимаемый объем.
Единица измерения плотности в СИ: кг/м3.
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Механический рычаг, момент силы
О механическом рычаге говорил еще Архимед, когда обещал перевернуть Землю, если только найдется подходящая точка опоры. Это простой механизм, который помогает поднимать грузы, закрепленные на одном его конце, прилагая силу к другому концу. При этом вес груза намного превосходит прилагаемое усилие. В 7 классе физические формулы, описывающие этот процесс, изучаются в том же разделе динамики.
Рычаг — это некое твердое тело, способное вращаться вокруг неподвижной точки опоры, на один конец которого действует сила, а на другом находится груз. Перпендикуляр, проведенный от точки опоры до линии действия силы, называется плечом силы. |
Рычаг находится в равновесии, если произведение силы на плечо с одной его стороны равно произведению силы на плечо с другой стороны.
Уравнение равновесия рычага:
F1 × l1 = F2 × l2
Из этого следует, что рычаг уравновешен, когда модули приложенных к его концам сил обратно пропорциональны плечам этих сил.
Момент силы — это физическая величина, равная произведению модуля силы F на ее плечо l. |
Формула момента силы:
M = F × l, где F — модуль силы, l — длина плеча.
Единица измерения момента силы в СИ: ньютон-метр (Н·м).
Эта формула верна, если сила приложена перпендикулярно оси рычага. Если же она прилагается под углом, такой случай выходит за рамки курса физики за 7 класс и подробно изучается в 9 классе.
Правило моментов: рычаг уравновешен, если сумма всех моментов сил, которые поворачивают его по часовой стрелке, равна сумме всех моментов сил, которые поворачивают его в обратном направлении. |
Можно сказать иначе: рычаг в равновесии, если сумма моментов всех приложенных к нему сил относительно любой оси равна нулю.
М1 + М2 + Мn + … = 0
Давление, сила давления
Прилагая одну и ту же силу к предмету, можно получить разный результат в зависимости от того, на какую площадь эта сила распределена. Объясняют этот феномен в программе 7 класса физические термины «давление» и «сила давления».
Давление — это величина, равная отношению силы, действующей на поверхность, к площади этой поверхности. Сила давления направлена перпендикулярно поверхности. |
Формула давления:
p = F / S, где F — модуль силы, S — площадь поверхности.
Единица измерения давления в СИ: паскаль (Па).
1 Па = 1 Н/м2
Понятно, что при одной и той же силе воздействия более высокое давление испытает та поверхность, площадь которой меньше.
Формулу для расчета силы давления вывести несложно:
F = p × S
В задачах по физике за 7 класс сила давления, как правило, равна весу тела.
Давление газов и жидкостей
Жидкости и газы, заполняющие сосуд, давят во всех направлениях: на стенки и дно сосуда. Это давление зависит от высоты столба данного вещества и от его плотности.
Формула гидростатического давления:
р = ρ × g × h, где ρ — плотность вещества, g — ускорение свободного падения, h — высота столба.
g = 9,8 м/с2
Единица измерения давления жидкости или газа в СИ: паскаль (Па).
Однородная жидкость или газ давит на стенки сосуда равномерно, поскольку это давление создают хаотично движущиеся молекулы. И внешнее давление, оказываемое на вещество, тоже равномерно распределяется по всему его объему.
Закон Паскаля: давление, производимое на поверхность жидкого или газообразного вещества, одинаково передается в любую его точку независимо от направления. |
Внешнее давление, оказываемое на жидкость или газ, рассчитывается по формуле:
p = F / S, где F — модуль силы, S — площадь поверхности.
Сообщающиеся сосуды
Сообщающимися называются сосуды, которые имеют общее дно либо соединены трубкой. Уровень однородной жидкости в таких сосудах всегда одинаков, независимо от их формы и сечения. |
Если ρ1 = ρ2, то h1 = h2 и ρ1gh1 = ρ2gh2, где:
p — плотность жидкости,
h — высота столба жидкости,
g = 9,8 м/с2.
Если жидкость в сообщающихся сосудах неоднородна, т. е. имеет разную плотность, высота столба в сосуде с более плотной жидкостью будет пропорционально меньше.
Высоты столбов жидкостей с разной плотностью обратно пропорциональны плотностям.
Гидравлический пресс — это механизм, созданный на основе сообщающихся сосудов разных сечений, заполненных однородной жидкостью. Такое устройство позволяет получить выигрыш в силе для оказания статического давления на детали (сжатия, зажимания и т. д.). |
Если под поршнем 1 образуется давление p1 = f1/s1, а под поршнем 2 будет давление p2 = f2/s2, то, согласно закону Паскаля, p1 = p2
Следовательно,
Силы, действующие на поршни гидравлического пресса F1 и F2, прямо пропорциональны площадям этих поршней S1 и S2.
Другими словами, сила поршня 1 больше силы поршня 2 во столько раз, во сколько его площадь больше площади поршня 2. Это позволяет уравновесить в гидравлической машине с помощью малой силы многократно бóльшую силу.
Закон Архимеда
На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ. |
Формула архимедовой силы:
Fa = ρ × g × V, где ρ — плотность жидкости, V — объем погруженной части тела, g — ускорение 9,8 м/с2.
Закон Архимеда помогает рассчитать, как поведет себя тело при погружении в среды разной плотности. Верны следующие утверждения:
если плотность тела выше плотности среды, оно уйдет на дно;
если плотность тела ниже, оно всплывет на поверхность.
Другими словами, тело поднимется на поверхность, если архимедова сила больше силы тяжести.
Работа, энергия, мощность
Механическая работа — это физическая величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение. |
Формула работы в курсе физики за 7 класс:
A = F × S, где F — действующая сила, S — пройденный телом путь.
Единица измерения работы в СИ: джоуль (Дж).
Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.
Мощность — это физическая величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения. |
Формула мощности:
N = A / t, где A — работа, t — время ее совершения.
Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.
N = F × v, где F — сила, v — средняя скорость тела.
Единица измерения мощности в СИ: ватт (Вт).
Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.
Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.
Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.
Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:
Кинетическая энергия | Пропорциональна массе тела и квадрату его скорости. | Ek = mv2/2 |
Потенциальная энергия | Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания. | Ep= mgh |
Полная механическая энергия | Складывается из кинетической и потенциальной энергии. | E = Ek+Ep |
Сохранение и превращение энергии | Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу. | Ek+ Ep= const |
Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.
Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии. |
Формула для расчета КПД:
где Ап— полезная работа, Аз— затраченная работа.
КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.
Удачи на экзаменах!
математик Эдвард Торп обыграл казино и заработал $800 млн на Уолл-стрит — Истории на vc.ru
Учёный хотел решать реальные задачи с помощью науки. Сначала он использовал физику и математику в азартных играх. Потом переключился на финансовые рынки, применил количественный метод анализа и открыл два хедж-фонда.
337 612 просмотров
Марк Бостер, Los Angeles Times
Книга Торпа «Обыграй дилера» о выигрышных стратегиях в блэкджеке взволновала мир казино. С математиком и основателем теории информации Клодом Шенноном Торп изобрел первый портативный компьютер, который позволял выиграть в рулетку. Ещё Торп придумал стратегию подсчёта карт в карточной игре баккаре.
Торп — «ветеран» Уолл-стрит с 50-летним опытом. Он разработал и усовершенствовал стратегии торговли конвертируемыми ценными бумагами и основал два фонда: Princeton Newport Partners и Ridgeline Partners. Они приносили ему 20% годовой прибыли.
Сейчас состояние Торпа оценивается в $800 млн.
Детство, увлечение наукой и любовь к экспериментам
Эдвард Торп родился в Чикаго в 1932 году в семье военного Оукли Гленна Торпа. В раннем детстве Торп освоил арифметику: считал в уме и вычислял квадратный и кубический корни. Однажды он решил досчитать до миллиона и заснул на числе 32 576. А когда проснулся, продолжил с того места, на котором остановился, вспоминала его мать.
С началом Второй Мировой войны семья перебралась в Калифорнию, в городок Ломита недалеко от Лос-Анджелеса. В средней школе Торп больше всего увлекался практическими занятиями по радиотехнике и электронике, химии и физике. Он любил ставить эксперименты и узнавать, как всё устроено.
Розыгрыши и эксперименты были частью моего метода изучения наук. Поняв какую-то теорию, я проверял её на самостоятельно придуманных опытах, многие из которых доставили мне массу удовольствия.
Я учился самостоятельно разбираться в различных вопросах, не ограничиваясь тем, чего требовали учителя, родители или школьная программа.
Эдвард Торп
Например, Торп сделал радиоприемник, чтобы понять, как невидимые волны передают звуки через пространство. Дома он устроил химическую лабораторию, где проводил эксперименты: вырабатывал водород, сам готовил порох.
Он создавал и тестировал другие взрывчатые вещества: пироксилин и нитроглицерин. Мастерил бомбы из кусков водопроводных труб, заправлял их порохом и взрывал на холмах недалеко от дома.
В выпускном классе Торп начал думать, как предсказать исход игры в рулетку. Он не увлекался азартными играми. Для него задача лежала в области физики: он видел сходство между вращающейся рулеткой и планетой, вращающейся по орбите.
Когда его учитель английского Джек Чессон приехал из Лас-Вегаса и сказал, что казино обыграть невозможно, Торп заявил, что однажды сделает это — и ему удалось.
Научная карьера и азартные игры
Ключ к рулетке и блэкджеку
В 1958 году Торп получил степень по математике в Калифорнийском университете в Лос-Анджелесе (UCLA) и начал преподавать. В аспирантуре он женился на Вивиан Синетар, она училась на отделении английской литературы. Они прожили вместе всю жизнь и воспитали троих детей.
В 1959 году Торп перешёл преподавать математику в MIT. Одновременно с научными исследованиями Торп получил ответы на интересовавшие его вопросы — как выиграть в рулетку и в блэкджек.
В 1960–1961 годах Торп и профессор MIT Клод Шеннон вместе работали над выигрышной стратегией игры в рулетку. Они купили списанное рулеточное колесо и в ходе опытов создали первый портативный компьютер.
Устройство размером с пачку сигарет один участник клал в ботинок. Первый раз он нажимал пальцем ноги на кнопку, когда рулетку запускали. Второй раз, когда колесо делало один оборот. Компьютер вычислял будущее положение шарика и посылал радиосигнал игроку. У него под одеждой был радиоприемник, от которого тонкий стальной провод шел к динамику в ухе, куда поступал сигнал.
После испытаний в казино Торп и Шеннон убедились, что система работает. Но компьютер был технически несовершенным: динамик иногда вылезал из уха, а провода рвались, из-за чего приходилось выходить из игры. Торп и Шеннон перестали его использовать.
Торп думал над тем, как выиграть в карточную игру блэкджек (или «двадцать одно») с 1958 года. Исследователь заметил, что даже опытные игроки не понимают математику, которая лежит в её основе. Он решил, что сможет найти способ систематически выигрывать в блэкджек.
В блэкджеке меня привлекали не деньги. Меня занимала возможность найти способ выигрывать силой мысли, не выходя из собственной комнаты. Мне также было любопытно исследовать мир азартных игр, о котором я тогда ничего не знал.
Эдвард Торп
Во время игры состав колоды меняется. Какие карты выбывают, а какие остаются, влияет на преимущество игрока или казино. Чтобы вывести выгодные для игрока закономерности, нужно просчитать миллионы карточных комбинаций. Если бы Торп делал это вручную, на калькуляторе, ему не хватило бы жизни. Но в MIT он мог использовать университетский IBM 704.
Торп выяснил, что чем больше в колоде остается девяток, десяток (это также дамы, короли и валеты) и тузов, тем лучше для игрока. Он разработал несколько стратегий подсчёта карт. В 1960 году наконец вывел оптимальную выигрышную стратегию — подсчёт десяток.
Чтобы понять, есть ли у него преимущество, игрок следит за отношением числа других карт к десяткам. В полной колоде 16 десяток и 36 других карт. 36 : 16 = 2,25. Если на момент выставления ставок отношение меньше 2,25, то в колоде много десяток — и игрок в выигрышном положении. Чем соотношение меньше 2,25, тем выше преимущество.
Для ставок Торп применил «критерий Келли», который предлагает делать более крупные ставки, когда у игрока преимущество, и маленькие ставки, когда преимущество на стороне казино.
По этой системе игрок обычно выигрывает большинство крупных ставок и в итоге получает прибыль, хотя он может проиграть большинство мелких ставок в невыгодных ситуациях по ходу игры.
Торп и миллионеры против казино
В 1961 в газете The Boston Globe вышла статья о Торпе — математике, который знает, как выиграть в блэкджек. Торпа завалили письмами и предложениями финансовой поддержки, чтобы испытать стратегию в казино. Предложения доходили до $100 тысяч. Торп отобрал двух кандидатов — мультимиллионеров из Нью-Йорка.
Первый, Эмануэль «Мэнни» Киммел, владел сетью парковок Kinney Parking и раньше занимался контрабандой алкоголя, нелегальными лотереями и был связан с преступными группировками. Второй, Эдди Хенд, был деловым партнером Киммела и занимался автоперевозками.
В ответ на скептические выпады прессы в его сторону Торп решил доказать, что его теория работает,
Я решил отправиться в Неваду отчасти для того, чтобы заткнуть рот любителям распространенных и довольно раздражающих издёвок над учеными: «Если вы такие умные, почему же вы такие бедные?”
Эдвард Торп
После живых встреч и тренировочных игр Торп, Киммел и Хенд отправились в казино в Рино. Там Торп проверил стратегию подсчёта десяток.
Киммел и Хэнд готовы были выделить банкролл — общий капитал для игры — в $100 тысяч. Но Торп договорился на $10 тысяч. Он не хотел рисковать, потому что ещё не очень разбирался в игровом мире.
Тур по разным казино показал, что стратегия работала. В одной из игр за два часа Торп и Киммел на двоих вывели банк стола — $17 тысяч. Из них $6 тысяч выиграл Торп, а $11 тысяч — Киммел. Торп понял, что теряет концентрацию, вышел из игры и обналичил свои фишки. Киммел продолжил и проиграл свою долю.
Для меня блэкджек был игрой математики, а не везения.
Эдвард Торп
После этого партнёры сыграли ещё несколько раз. В итоге поездка по казино закончилась победой. За 30 часов капитал игроков вырос с $10 тысяч до $21 тысячи.
Эдвард Торп в казиноДон Крэвенс, The LIFE Images Collection, Getty
Паника в казино
Летом 1961 года контракт Торпа с MIT истёк. Ему предлагали продолжить работу, но он ушёл. Большую часть времени учёный проводил над стратегиями для выигрыша в рулетку и блэкджек, а не над научными проектами.
В конечном счёте Торп перевёлся в Университет штата Нью-Мексико. Там он получил постоянный контракт и время для исследований.
Торп продолжал проверять свою стратегию в казино. Выигрышные стратегии игры в блэкджек и способы вычислить шулеров он обобщил в книге «Обыграй дилера», вышедшей в 1962 году.
Книга произвела панику в мире казино. Сначала в прессе выходили язвительные статьи в адрес Торпа, которые отрицали возможность обыграть казино в блэкджек. Но одновременно с этим казино вычисляли игроков, которые считали карты, и запрещали им играть.
Торп даже был вынужден переодеваться и маскироваться, чтобы не стать жертвой местных воротил. В 1964 году впервые в истории казино даже поменяли правила игры в блэкджек. Правда, ненадолго, так как постоянные игроки, которые не считали карты, были недовольны.
Математическая идея, возникшая в моей голове, породила систему, позволяющую победить. Я рассчитывал на честную игру и думал использовать тайное оружие — свой разум — в спортивном состязании.
Вместо этого я столкнулся с запретами на игру, шулерством, стал персоной нон грата за большинством карточных столов. При виде паники, в которую впало это чудовище, я с удовлетворением чувствовал себя отомщённым. Приятно было сознавать, что я сумел изменить окружающий мир одной лишь силой математической мысли.
Эдвард Торп
Баккара, угроза жизни и отход от азартных игр
После рулетки и блэкджека Торп приступил к другой карточной игре — баккаре, известной сейчас по фильму «Казино “Рояль”» о Джеймсе Бонде. В 1962 году совместно с математиком Биллом Уолденом он разработал стратегию подсчёта карт для баккары, в 1963-м — поехал в Лас-Вегас, чтобы проверить её.
Торп и его спутники играли в казино Dunes пять дней. Там их выигрыши не нравились администрации, Торпу два раза сделали «предупреждение»: добавляли наркотики в напитки. В последний, шестой, вечер они играли в казино Sands, откуда Торп ушел с выигрышем в $2500 — но совладелец казино лично запретил Торпу играть в заведении, вспоминал Торп в книге «Человек на все рынки».
Эдвард Торп в 1964 году Журнал Life, выпуск 27 марта 1964 года
По дороге из Лас-Вегаса обратно в Лас-Крусес у игроков возникла проблема с тормозами в автомобиле. Оказалось, что одна деталь была откручена. Играть в казино, где Торпа уже узнавали, становилось опасно. Он решил сменить площадку своей деятельности и обратился к миру инвестиций.
Могут ли мои методы выигрыша в азартных играх дать мне преимущество на величайшей в мире игровой арене, на Уолл-стрит?
Эдвард Торп
Первые неудачные инвестиции
Торп инвестировал гонорары от книг и выигранные деньги, но неудачно. В первый раз он купил 100 акций компании Electric Autolite на $4000, потому что компании прочили рост в будущем. В течение двух лет стоимость акций упала в два раза, и Торп ждал ещё четыре года, пока не вернул вложения.
В другой раз он послушал двух человек, которые, как они говорили, разбогатели на инвестициях в компании по страхованию жизни. Они посоветовали Торпу вложиться в агентство A. M. Best, её индекс рос последние 24 года. Торп послушал, вложил деньги — и всё потерял.
Математик понял, что было ошибкой полагаться на инерцию рынка — на то, что долговременный рост продлится и дальше. Он решил изучить проблему и понять, как устроен рынок, как оценивать риск и прогнозировать стоимость ценных бумаг в будущем.
Торп был уверен, что, как и азартные игры, финансовые рынки можно проанализировать с помощью математики, статистики и компьютера.
Потери нескольких тысяч долларов было достаточно, чтобы правильное управление рисками стало важной для меня темой на следующие пять с лишним десятков лет.
Эдвард Торп
Что такое варранты и как на них заработать
Летом 1965 года Торп прочитал брошюру об инвестиционных варрантах. Варрант — ценная бумага, по которой можно купить обыкновенные акции компании по указанной цене в обозначенный срок или раньше. Чтобы получить выгоду, нужно понимать, правильно ли оценён варрант. Но его стоимость зависит от предполагаемой стоимости обыкновенной акции в будущем.
Представьте, что у вас есть варрант IBM. В настоящий момент акция компании стоит $100. Варрант, срок действия которого истечёт через 12 месяцев, будет иметь ценность, только если акции за это время в какои-то момент вырастут до $110.
Если вы можете определить, насколько они волатильны (какова вероятность того, что они дорастут до отметки в $110 за указанный временной отрезок), вы знаете, какова на самом деле цена варранта.
Скотт Паттерсон, цитата по книге «Кванты»
В это время Торп перевёлся на работу в Калифорнийский университет в Ирвайне (UCI). Там профессор Шин Кассуф уже написал диссертацию о варрантах и даже зарабатывал на них деньги.
Торп и Кассуф вместе улучшили метод инвестирования в варранты. В его основе лежало хеджирование рисков. Они приблизительно определяли справедливую цену варрантов.
Чтобы заработать, продавали переоцененные варранты без покрытия (короткая продажа), то есть не покупая их на самом деле. Для этого они одалживали необходимое количество варрантов у брокера, продавали их и получали выручку. Потом, чтобы вернуть брокеру долг, они покупали эти же варранты по текущей цене.
Если текущая цена была ниже цены продажи, была прибыль. Если выше — убыток. Чтобы нейтрализовать риск, Торп и Кассуф хеджировали варранты — покупали связанные с ними обыкновенные акции. Если расчёт был верный, прибыль одной операции компенсировала потери другой.
Торп и Кассуф инвестировали по своей модели, и это приносило им 25% годовых. О своей методике и результатах сделок они рассказали в книге «Обыграй рынок», которая вышла в 1967 году. Торп хотел делиться результатами своих открытий. Будучи человеком из мира науки, он считал, что научные открытия — всеобщее достояние. К тому же это мотивировало его на поиск новых идей.
После выхода книги Торп продолжил работать над теорией и в том же 1967 году вывел формулу, которая позволяла точнее определять, насколько завышена или занижена цена варранта. Торп продолжал инвестировать, и заработок рос.
Глядя на успехи Торпа, коллеги и знакомые доверили ему свои деньги. Он управлял их инвестиционными портфелями. Было ясно, что эффективнее создать пул активов и через одну учётную запись управлять большим количеством с меньшими усилиями. Но Торп ещё не понимал, как это сделать.
Торп открывает хедж-фонд
Встреча с Баффетом
В 1968 году Уоррен Баффет распускал свой инвестиционный фонд Buffett Limited Partnerships. Одним из его инвесторов был Ральф Джерард, декан в UCI, где работал Торп. Джерард хотел снова вложить деньги и подумывал обратиться к Торпу, но сначала попросил опытного инвестора Баффета оценить его.
Так Баффет и Торп встретились: они играли в бридж и обсуждали подходы к инвестициям. Баффет рассказал об устройстве его товарищества инвесторов — по сути, хедж-фонда. После этого Торп понял, как действовать.
Работа фонда: конвертируемый арбитраж
В 1969 году Торпу позвонил брокер Джей Риган, который прочёл «Обыграй рынок» и хотел открыть хедж-фонд по системе Торпа.
В том же году они открыли Convertible Hedge Associates, который позже переименовали в Princeton Newport Partners (PNP). Капитал составил $1,4 млн. Это были деньги Торпа, Ригана и нескольких инвесторов.
Риган в офисе в Нью-Йорке занимался покупкой и продажей ценных бумаг, налогами, учетом и документацией. Торп в Ньюпорт-Бич (в Калифорнии) сосредоточился на разработках и исследовании рынка.
Как и в блэкджеке, я мог оценить предполагаемую прибыль, представить возможный риск и решить, какую часть капитала следует поставить на карту. Но вместо банкролла в $100 тысяч у меня было теперь $1,4 млн, а вместо игорного дома с предельной ставкой $500 я играл на Уолл-стрит — казино без ограничения ставок.
Эдвард Торп
PNP специализировался на хеджировании конвертируемых ценных бумаг: варрантов, опционов, конвертируемых облигаций и привилегированных акций. Постепенно к ним добавлялись другие типы деривативов и производных ценных бумаг по мере их появления.
Фонд работал по принципу конвертируемого арбитража. Это стратегия сделок с конвертируемыми ценными бумагами, когда риски в достаточной мере нейтрализованы, а прибыль вероятна, а зачастую и гарантирована.
Защиту обеспечивал «хедж» — пакет акций и связанных с ними конвертируемых ценных бумаг одной компании. Чтобы создать хедж, нужно было купить недооцененные ценные бумаги и сделать короткую продажу переоцененных. Так минимизировались риски при неблагоприятном изменении цены.
В основе конвертируемого арбитража лежит количественный метод анализа, математические формулы. Торп создал алгоритм, при помощи которого компьютер создавал диаграммы: они показывали «справедливое» соотношение между ценой конвертируемой ценной бумаги и ценой акции той же компании.
Так Торп находил выгодные сделки. Каждый день после закрытия рынка он звонил Ригану в Нью-Йорк с инструкциями по торговле на следующий день.
Так выглядела одна из сделок по модели Торпа. В 1972 компания Resorts International, которая создавала курорты и казино на Багамах, продавала варранты по 27 центов. Модель Торпа говорила, что варранты были недооценены и на самом деле стоили $4. Поэтому PNP купил 10 800 варрантов общей стоимостью $3200 после вычета комиссионных и хеджировали риск потерь, продав 800 обыкновенных акций по цене $8.
Через 6 лет акция преодолела отметку в $100. В итоге фонд продал варранты по цене более $100 и заработал $1 млн.
Система Торпа шла в разрез с принятыми видением рынка — так называемой «гипотезой эффективного рынка». Она гласила, что рынок развивается случайно и нельзя предсказать рост или падение ценных бумаг. И что фактические цены дают исчерпывающую информацию о рынке. Наиболее надежным считали инвестирование в индексные фонды.
Но PNP доказал, что его стратегия устойчива даже при глубоких кризисах. Например, во время «медвежьего рынка» 1973–1974 годов фондовый рынок упал на 48,2%. Такого не было со времен Великой депрессии. В 1974 году индекс S&P 500 упал на 29,7%, а PNP получил прибыль 9%.
Торп стал миллионером: инвестиции или наука
В первые два месяца работы PNP в 1969 году комиссия Торпа составила $5600 — больше университетской зарплаты.
Было ясно, что я стою на распутье. Я мог использовать математические умения для разработки стратегий хеджирования и, возможно, разбогатеть. Или же я мог остаться в мире науки, продолжая борьбу за продвижение по карьерной лестнице и ученые звания.
Эдвард Торп
Торп решил продолжить научную карьеру, потому что любил исследования и преподавание. Одновременно он развивал количественные методы финансирования, но эта информация оставалась только в кругу вкладчиков.
К 1975 году Торп стал миллионером. Постепенно по образу жизни помимо его воли он отдалялся от привычного круга общения — образованных интеллектуалов из университетской среды. Одновременно он расходился и с коллегами по математическому факультету в UCI. Они сосредоточивались на чистой математике, а Торпа всё больше интересовала прикладная математика для решения реальных задач.
В 1982 году Торп отказался от должности профессора в UCI. Последние несколько лет он был главой математического факультета, а затем факультета управления, и разочаровался в том, как устроена университетская система изнутри.
После ухода из университета Торп сосредоточился на конкуренции с математиками, физиками и финансистами, которые теперь стекались на Уолл-стрит из академических кругов. Их прозвали квантами, и Скотт Паттерсон посвятил им одноименную книгу.
Второй хедж-фонд Ridgeline Partners: покупай дёшево, продавай дорого
В 1988 году хедж-фонд PNP закрылся. Главная причина — расследование против нескольких сотрудников принстонского отделения фонда, которые были замешаны в махинациях, неуплате налогов и мошенничестве. Торпа ни в чем не обвиняли, но фонд значительно ослаб после судебных издержек.
Кроме того, отделение в Принстоне тратило большую часть времени на защиту в суде, и прибыль фонда за 1988 год составила всего 4%. Торп вышел, а за ним и вкладчики.
Второй фонд Ridgeline Partners математик открыл в 1994 году с партнёром по прошлому фонду и другом Стивеном Мидзусава. Новый фонд работал по методу статистического арбитража, который Торп опробовал еще во времена PNP.
Торп и Мидзусава наблюдали за двумя группами акций — с наивысшим уровнем роста и падения. В течение следующего периода те акции, которые резко выросли, замедляли свой рост или падали, а упавшие акции росли. Торп и Мидзусава покупали падающие акции, которые затем вырастут (длинная позиция), и продавали растущие акции, которые потеряют в цене (короткая позиция).
Идея статистического арбитража Торпа — уравновесить длинную и короткую позиции. То есть провести длинную покупку и короткую продажу на одну сумму. Это позволяет создать приблизительно рыночно-нейтральный портфель, на который мало влияют колебания рынка.
Весь наш пакет акций, участвующих как в длинных, так и в коротких сделках, обновляется приблизительно раз в две недели. Мы продаем каждый раз на $540 млн акции, полученные в результате длинных покупок, и покупаем взамен новые акции ещё на $540 млн. Так что суммарный торговый оборот составляет $1,08 млрд.
То же происходит и с короткими продажами, сделки по которым прибавляют к обороту еще $1,08 млрд. Поскольку этот цикл повторяется двадцать пять раз в год, за год мы проводим сделок на $54 млрд, или 1,5 млрд акций.
Торп о работе Ridgeline Partners в 2000 году
Фонд работал до 2002 года. За время работы его доходность в среднем составляла 20% годовых, но в 2001–2002 годах она стала снижаться. Торп объяснял это ситуацией на рынке: ростом активов хедж-фондов и распространением статистического арбитража. Решение закрыть фонд подкреплялось и личными причинами.
Время было для меня ценнее, чем получение лишних денег. Мы с Вивиан хотели общаться с детьми, их семьями, путешествовать, читать и получать новые знания.
Эдвард Торп
Жизнь Торпа после фондов
После закрытия Ridgeline Partners Торп инвестирует в другие хедж-фонды. Он говорит, что сейчас его единственная инвестиция в фондовый рынок — акции фонда Уоррена Баффета Berkshire Hathaway. Торп купил их в 1983 году, когда акция стоила $982,50, а сейчас она стоит $315 206.
Эдвард Торп New York Post
Торп — президент компании Thorp & Associates, которая занимается консалтингом в области финансов.
Хотя он закончил работу в UCI в 1982 году, учёный продолжал принимать участие в жизни университета. В 2003 году он с женой Вивиан учредил кафедру и должность профессора математики на математическом факультете. Целью Торпа было привлечь выдающегося ученого на должность профессора и поддерживать его исследования. Но он не хотел просто передать средства, он хотел выстроить эффективную финансовую систему кафедры.
Поэтому Торп пожертвовал университету часть акций компании Berkshire Hathaway, проценты от которых следовало реинвестировать. У Торпа было условие — использовать деньги только для поддержки исследовательской работы профессора кафедры, и лишь 5% выделять на ненаучные расходы.
В 2004 году Торп пожертвовал деньги на исследование стволовых клеток. Тогда администрация Джорджа Буша-младшего резко сократила финансирование этой области. Благодаря вкладу Торпа и других спонсоров при UCI заработал Центр исследования стволовых клеток Сью и Билла Гросс.
В 2018-м Торп подарил университетской библиотеке UCI свой архив: научные документы и неопубликованные исследования. За год до этого вышла книга «Человек на все рынки», где Торп рассказал о личной жизни, приключениях в казино и работе в сфере инвестиций.
Торпу 88 лет, его состояние составляет $800 млн.
Лучшим было то время, которое я провел с небезразличными мне людьми — женой, родными, друзьями и сотрудниками. Что бы вы ни делали, радуйтесь жизни и тем людям, с которыми вы ее разделяете, и оставьте после себя что-нибудь, что поможет следующим поколениям.
Эдвард Торп
Common Core: Карточки по математике для 2-го класса
Хотите просмотреть Common Core: Математика для 2-го класса, но не хотите сейчас сдавать весь тест? Varsity Tutors предоставили вам тысячи различные карточки Common Core: Математика для 2-го класса! Наши карточки Common Core: Математика для 2-го класса позволяют вам практиковаться с минимальным или большим количеством вопросов. как вам нравится. Приступайте к учебе прямо сейчас с нашими многочисленными карточками Common Core: математика для 2-го класса.
Общая математика: карточки для 2 класса 2150 Карточки
Карточки по геометрии 60 карточек
Разбиение прямоугольника на квадраты одинакового размера: CCSS.Math.Content.2.G.A.2 12 Flashcards
Разбиение кругов и прямоугольников на две, три или четыре равные части: CCSS. Math.Content.2.G.A.3 Flashcards 24 карточки
Распознавание и рисование фигур: CCSS.Math.Content.2.G.A.1 Карточки 24 карточки
Карточки с измерениями и данными 421 карточки
Рисование изображений и гистограмм для представления набора данных: CCSS.Math.Content.2.MD.D.10 Flashcards 108 Flashcards
Выберите правильный инструмент для измерения объектов: CCSS.Math.Content.2.MD.A.1 Flashcards 37 карточек
Решаем словесные задачи, связанные с деньгами: CCSS.Math.Content.2.MD.C.8 Карточки 72 карточки
Расскажи и запиши время с точностью до пяти минут: CCSS.Math.Content.2.MD.C.7 Flashcards 132 карточки
Использование числовой строки для представления целых чисел от 0 до 100: CCSS.Math.Content.2.MD.B.6 Flashcards 72 Карточки
Числа и операции с основанием десять карточек 1141 Flashcards
100 можно рассматривать как набор из десяти десятков: CCSS. Math.Content.2.NBT.A.1a Flashcards 96 Flashcards
Сложение и вычитание в пределах 1000: CCSS.Math.Content.2.NBT.B.7 Flashcards 2 карточки
Сложение и вычитание в пределах 100: CCSS.Math.Content.2.NBT.B.5 Карточки 48 карточек
Сложите до четырех двузначных чисел: CCSS.Math.Content.2.NBT.B.6 Flashcards 12 карточек
Добавить в пределах 1000 карточек 11 Flashcards
Сравните два трехзначных числа: CCSS.Math.Content.2.NBT.A.4 Flashcards 48 Flashcards
Счет в пределах 1000 по 1, 5, 10 и 100, CCSS.Math.Content.2.NBT.A.2 Flashcards 108 Flashcards
Мысленное прибавление и вычитание 10 или 100 до заданного числа: CCSS.Math.Content.2.NBT.B.8 Flashcards 49Карточки
Названия чисел для сотен: CCSS.Math.Content.2.NBT.A.1b Карточки 36 Flashcards
Чтение и запись чисел до 1000 по цифрам, именам чисел и расширенной форме: CCSS. Math.Content.2.NBT.A.3 Flashcards 348 карточек
Вычесть в пределах 1000 карточек 11 Карточки
Понимание разрядности трехзначных чисел: CCSS.Math.Content.2.NBT.A.1 Карточки 372 карточки
Карточки с операциями и алгебраическим мышлением 528 Flashcards
Определение четного или нечетного количества объектов: CCSS.Math.Content.2.OA.C.3 Flashcards 24 карточки
Мысленное сложение и вычитание в пределах 20: CCSS.Math.Content.2.OA.B.2 карточки 432 Flashcards
Использование сложения и вычитания в пределах 100 для решения одно- и двухшаговых задач: CCSS.Math.Content.2.OA.A.1 Flashcards 60 карточек
Использование сложения в пределах 100 для решения словесных задач на карточках 48 карточек
Использование вычитания в пределах 100 для решения текстовых задач карточки 12 Flashcards
Использование дополнения для определения количества объектов в прямоугольном массиве: CCSS. Math.Content.2.OA.C.4 Flashcards 12 Карточки
К тому времени, когда учащиеся закончат второй класс, они должны иметь некоторое представление о понятиях сложения и вычитания (включая выполнение этих действий в пределах 20), как сложение и вычитание связаны с длиной, и они должны понимать значение места.
Это лишь некоторые из понятий и математических операций, которые ученики второго класса должны изучить в этом году; ожидается, что они будут иметь некоторое представление об абстрактных рассуждениях и количественных рассуждениях, а также использовать модели для объяснения математических концепций.
Если вы являетесь родителем и обеспокоены тем, как ваш ребенок справится с требованиями Common Core Second Grade Math, вы, вероятно, захотите найти учебные пособия и обзорные материалы, которые вы можете использовать со своим ребенком, чтобы помочь ему освоить концепции, которые они должны знать. Учебные инструменты Varsity Tutors включают в себя набор онлайн-карточек для Common Core Second Grade Math, которые охватывают такие темы, как определение фигур на основе количества сторон или углов, определение наиболее подходящих инструментов для измерения различных предметов и объяснение значений мест.
Существует более 1000 карточек с подробным описанием понятий, с которыми может столкнуться ваш ребенок во втором классе во время изучения математики, и эти карточки предлагают учащимся простой способ просмотреть различные математические темы, которые они могут изучать в течение года. Каждая карточка представляет собой вопрос с несколькими вариантами ответов с пятью возможными ответами на выбор; ваш сын или дочь получат немедленную обратную связь, когда они выберут ответ во время сеанса проверки. Они не только узнают, правильный ли ответ они выбрали, но и увидят подробное объяснение ответа. Если ваш ученик выбрал неправильный ответ, он увидит подробное объяснение того, как прийти к правильному ответу.
Независимо от того, есть ли у вас и вашего ребенка немного времени или у вас есть несколько часов, чтобы посвятить повторению понятий Common Core Second Grade Math, эти карточки являются гибким вариантом для учебы. Ваш ученик может просмотреть карточки наугад, чтобы понять, насколько ему комфортно с математическими понятиями второго класса, или сосредоточиться на карточках в определенных разделах, чтобы работать над темами, с которыми у них могут возникнуть трудности. Нет штрафа за пропуск карточки, которая пригодится для тем, понятных вашему ребенку; также есть возможность вернуться к карточкам, на которые вы уже дали ответ, также без штрафных санкций.
Если вы заинтересованы в других учебных пособиях, которые помогут вашему ребенку с математикой Common Core, в средствах обучения Varsity Tutors есть много полных практических тестов, которые помогут вам увидеть, где вашему сыну или дочери может понадобиться дополнительная помощь, более короткие практические тесты, ориентированные на по отдельным темам, интерактивная учебная программа под названием «Учись по концепции» и серия «Вопрос дня», в которой предлагается случайный вопрос о концепциях, подходящих для учащихся второго класса в математических стандартах Common Core. Вы также можете отслеживать понимание тем вашим ребенком с помощью таблицы, показывающей, на какие вопросы были даны правильные ответы, а на какие даны неправильные ответы.
Общие базовые стандарты штата © Copyright 2010. Центр передового опыта Национальной ассоциации губернаторов и Совет руководителей школ штата. Все права защищены.
Развивайте беглость математических фактов с помощью карточек
Год за годом у меня были ученики, которые с трудом усваивали математические факты. Это мешало уверенно двигаться дальше в обучении более сложным математическим понятиям. В этом посте я обсуждаю, как создать набор стратегий для повышения беглости математических фактов с помощью карточек.
Для того, чтобы свободно владеть математическими фактами, учащимся необходимо ежедневно повторять различные упражнения. Вот несколько идей, которые можно сочетать с набором карточек, чтобы удовлетворить потребности учащихся в математических фактах.
Конкретные модели — первый шаг к демонстрации понимания1. Используйте манипуляции
Когда учащиеся только начинают изучать математические операции, им нужны конкретные модели. Обучение учащихся начинается с визуального, осязаемого и кинестетического опыта для установления базового понимания. Сочетание математических карточек с манипуляторами помогает учащимся визуализировать то, что происходит с числами. Я думаю, у нас часто бывает такое ожидание, что все нужно делать быстро.
Я имею в виду, они называются «флеш-карты». Но есть кое-что, что можно сказать о медленном начале. Позвольте учащимся исследовать кубики, двусторонние фишки или кубики с основанием 10. Попросите их представить проблему, не показывая их сначала. Именно в этих возможностях исследования мы можем увидеть мышление учащихся и быть лучше подготовленными для управления их обучением.
2. Практика с ответами
Это может показаться нелогичным, но знакомство с правильными ответами и чтение их вслух поможет учащимся ознакомиться с математическими фактами. Это отличный первый шаг, особенно при введении новых фактов. Попросите студентов написать ответ на обороте и просто начните с чтения факта с ответом. Затем поощряйте решение, а затем проверку. Это будет способствовать независимости в применении математических фактов и укрепит уверенность, потому что учащиеся имеют поддержку. Это не так сложно, когда вы знаете, что у вас есть доступ к правильному ответу. И кажется безопаснее бросать себе вызов, потому что у вас есть эта страховка.
3. Сопоставление и сортировка по сумме (или разнице, произведению и т. д.)
Теперь, когда учащиеся попрактиковались в решении и знакомы с ответами, попросите их сопоставить карточки по суммам, разностям и т. д. Поиск закономерностей создаст ментальные связи, которые в конечном итоге можно будет использовать в качестве стратегий. Вместе с карточками сложения и вычитания (или умножения и деления) попросите учащихся сопоставить семейства фактов. Стать уверенными в фактах семьи помогут в освоении фактов.
4. Играть в игры
Если вы меня знаете, то знаете, что это мой любимый. Игры повышают вовлеченность и мотивацию. Я собрал 14 различных игр с карточками, в которые могут играть ваши ученики (ПЛЮС бесплатные карточки для печати!). Нажмите здесь, чтобы загрузить.
5. Практические занятия
Возьмите стопку карточек с солью, сахаром, песком или посыпьте в коробку или поднос.