Деление и умножение в столбик онлайн: Онлайн калькулятор. Сложение, вычитание, умножение и деление столбиком
Деление в столбик 3 класс. Примеры для тренировки и объяснения. Блог Кувырком
Таблица умножения – это не самое трудное, с чем сталкивается младший школьник. Гораздо сложнее освоить деление в столбик. Многие дети без помощи родителей не могут понять этот процесс. Давайте разберёмся, как легко и без лишней нервотрёпки обучить ребёнка делить в столбик.
Что нужно знать, чтобы научиться делить в столбик?
Деление столбиком школьники обычно начинают изучать на уроках математики в третьем классе. Чтобы понять процесс деления и начать использовать его на практике, школьник должен уметь следующее:
- без труда решать примеры на сложение и вычитание;
- знать наизусть таблицу умножения;
- знать разряды чисел;
- уметь быстро считать в уме.
Если в этих знаниях у ребёнка есть пробел, ему трудно будет научиться делить столбиком. Поэтому перед началом обучения нужно обязательно повторить пройденный ранее материал, особенно таблицу умножения.
Учимся считать и считать вместе с КУВЫРКОМ
С чего начать учить ребёнка делению?
Прежде всего, объясните школьнику суть этого математического действия. Он должен понять, что деление – это процедура обратная умножению. Когда школьник усвоит, что эти два действия взаимосвязаны друг с другом, научиться делить будет несложно.
Учить проще всего на практических, понятных детям примерах. Выдайте сыну или дочери конфеты и предложите разделить их между членами семьи. Вместо конфет можно использовать разрезанный на куски пирог. Главное, чтобы школьник уяснил суть действия: раздать угощение так, чтобы все получили поровну и без остатка.
Проявите фантазию, придумывая разные примеры, а затем запишите ваши действия в тетради, чтобы ребёнок увидел, как выглядит математическая запись деления (пока что не столбиком, а в строку).
Теперь возьмите таблицу умножения и выберите оттуда любой пример. Покажите сыну или дочери, что, если произведение разделить на один из множителей, результат такого действия будет равен второму множителю.
Поэкспериментируйте с разными примерами из таблицы, чтобы школьник наглядно увидел эту закономерность.
Играем вместе с КУВЫРКОМ
Алгоритм деления в столбик
Для решения любых примеров на деление используется следующий алгоритм
:- Найдите в примере делимое (число, находящееся слева от знака деления, то есть число, которое нужно разделить) и делитель (число, находящиеся справа от знака, то есть число, на которое нужно разделить).
- Запишите первое число – делимое – слева, а второе – делитель – справа, а между ними нарисуйте «уголок».
- Определите неполное делимое, то есть часть первого числа, которую можно взять для первичного деления. Сначала возьмите первую цифру. Если она не подходит для деления, добавьте к ней следующую и т. д.
- Посчитайте, сколько раз второе число (делитель) помещается в неполном делимом.
- Для проверки правильности действия умножьте делитель на полученное число и запишите результат умножения под выбранную часть делимого.
Это будет неполное частное. - Вычислите разницу – это будет остаток.
- Повторяйте эти действия до тех пор, пока в остатке не получится 0.
Некоторые числа нельзя разделить так, чтобы в остатке получился 0. Примеры, в которых остаток больше нуля, называются делением с остатком.
Играем вместе с КУВЫРКОМ
Деление в столбик без остатка
Теперь применим этот алгоритм к конкретному примеру. Возьмём простой пример 35:5=?
Запишите делимое и делитель и нарисуйте между ними «уголок».
Попросите школьника найти неполное делимое – часть делимого, на которую можно разделить число 5 (делитель). Первая цифра в делимом – 3. Спросите у него, сколько пятёрок поместится в число 3? Ребёнок скажет, что ни одной. Значит, добавляем к тройке следующую цифру из делимого – пятёрку и получаем 35 (наше полное делимое).
Спросите у ребёнка, сколько троек поместится в число 35? Школьник, знающий таблицу умножения, без труда посчитает, что в 35 помещается 7 пятёрок.
Число 7 записываем под «уголок». Это и будет ответ.
Это очень простой пример деления двузначного числа на однозначное без остатка. Результат можно проверить с помощью таблицы умножения. Потренируйтесь на подобных примерах, чтобы ребёнок хорошо усвоил алгоритм действий.
Теперь попробуйте решить пример с трёхзначным делимым. Возьмём пример 372:6=?
Запишите пример в столбик.
Попросите ребёнка определить неполный делитель. Первое число в делимом – 3. Сколько шестёрок (шестёрка – делитель) помещается в тройку? Ни одной. Значит добавляем к тройке следующее число из делимого – семерку. Получаем 37. Теперь смотрим, сколько шестёрок поместится в 37. Ребёнок, вспомнив таблицу умножения, без труда вычислит, что в 37 поместится шесть шестёрок и единица останется в остатке.
Запишите неполное частное (6) под делитель, а число 36 под делимое. Вычтите из 37 число 36. Получится 1 (это остаток). Запишите.
Теперь посмотрите, сколько шестёрок поместится в остаток (1)? Ни одной.
Теперь добавьте к единице число, оставшееся в делимом – 2. Получилось 12. Сколько шестёрок поместится в 12? Две шестёрки. Добавьте двойку к уже имеющемуся у нас неполному частному 6. Получится 62. Из 12 вычтите 12. Получится 0. Запишите.
Предложите ребёнку попробовать решить примеры с четырёх-, пяти-, шестизначными делимыми, а также с двузначными делителями. Независимо от величины чисел принцип действий будет одинаковым.
Деление в столбик с остатком
Расскажите ребёнку, что некоторые числа нельзя разделить без остатка. Для лучшего понимания продемонстрируйте это действие на наглядном примере. Дайте сыну или дочери пять конфет и попросите разделить их между ним и вами. Ребёнок даст вам и себе по две конфеты и останется ещё одна.
Объясните ему, что так произошло потому, что число 5 не делится на 2 поровну. Остаётся одна конфета, которая и является в данном случае остатком. Дайте ребёнку больше конфет и снова попросите его разделить на троих, четверых, пятерых.
Снова обратите внимание на то, что далеко не всегда конфеты можно разделить поровну.
После того как ребёнок поймёт суть такого деления, переходите к решению примеров в столбик. Решаются они по тому же принципу, только вместо нуля в остатке получается какое-либо другое число.
Почему ребёнку сложно освоить деление в столбик?
Деление – это наиболее сложное арифметическое действие из четырёх основных. Многие дети прекрасно справляются со сложением, вычитанием, умножением, но буксуют, когда дело доходит до деления. Проблема здесь заключается в том, что ребёнок не понимает сам принцип деления. Постарайтесь объяснить ему алгоритм этого математического действия как можно доходчивее. Если не получается, обратитесь за помощью к учителю.
Если же ребёнок не умеет быстро считать в уме и плохо знает таблицу умножения, то с делением у него обязательно возникнут проблемы. В этом случает важно до автоматизма отточить навык сложения и вычитания и хорошо выучить таблицу умножения.
На первых порах обучения делению столбиком можно держать таблицу при себе и изредка подсматривать в неё.
Не ругайте ребёнка, если у него не получается быстро освоить деление столбиком. Вспомните себя в его возрасте – наверняка у вас тоже были подобные проблемы. Наберитесь терпения и объясняйте правила столько раз, сколько требуется. Не ставьте цель научить сына или дочь делить столбиком за один вечер. Избыток информации утомит ребёнка и снизит его обучаемость. Занимайтесь в комфортном для него темпе и вскоре он научится решать примеры самостоятельно, без вашей помощи. Не забывайте хвалить и вознаграждать школьника за старание – это повысит его мотивацию.
Умножение десятичных дробей — примеры, правила как умножать в 5 классе
Поможем понять и полюбить математику
Начать учиться
178.9K
Десятичные дроби — хитрый зверек, но только не для нас.
В этой статье научимся умножать десятичные дроби, чтобы решать задачки на контрольной в 5 классе и старше легко и быстро.
Понятие десятичной дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
обыкновенный вид — ½ или a/b,
десятичный вид — 0,5.
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
Вернемся к обыкновенным дробям позже, а сейчас обсудим десятичные дроби. Их знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути,
0,8
7,42
9,932
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Узнай, какие профессии будущего тебе подойдут
Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас
Свойства десятичных дробей
Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится.
Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:
0,600 = 0,6;
21,10200000 = 21,102.
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то она равна нулю.
Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде, если знаменатель обыкновенной дроби равен 10, 100, 1000 и т. д.
Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби, если знаменатель обыкновенной дроби равен 10, 100, 1000 и т. д. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.
Курсы обучения математике помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Как записать десятичную дробь
Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.
Пример 1. Перевести обыкновенную дробь в десятичную.
Как решаем:
- Знаменатель равен 10 — это один ноль.
Отсчитываем справа налево в числителе дробной части один знак и ставим запятую.
В полученной десятичной дроби цифра 1 — целая часть, цифра 6 — дробная часть.
Ответ:
Пример 2. Перевести в десятичную дробь.
Как решаем:
Знаменатель равен 1000 — это три нуля.
Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.

Так как в числителе только две цифры, то на пустующие места пишем нули.
В полученной десятичной дроби цифра 0 — целая часть, 037 — дробная часть.
Ответ:
Как читать десятичную дробь
Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:
| Сколько цифр после запятой? | Читается, как |
|---|---|
| одна цифра — десятых; | 1,3 — одна целая, три десятых; |
| две цифры — сотых | 2,22 — две целых, двадцать две сотых; |
| три цифры — тысячных; | 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных; |
| четыре цифры — десятитысячных; | 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных; |
и т. д. |
Сохраняй наглядную картинку, чтобы быстрее запомнить.
Свойства умножения
С десятичными дробями можно производить те же действия, что и с любыми другими числами: складывать и вычитать, делить и умножать. В этом блоке узнаем, как умножать дроби.
| Свойства умножения десятичных дробей |
|---|
|
Умножение десятичных дробей друг на друга можно упростить и просто умножить натуральные числа. Главное — правильно поставить запятую в ответе.
Если в задаче даны десятичные дроби с разными знаками — используем правило умножения отрицательных чисел. Как быстро запомнить:| «−−» | минус на минус дает плюс |
| «−+» | минус на плюс дает минус |
| «+−» | плюс на минус дает минус |
| «++» | плюс на плюс дает плюс |
Числа с единицей и нулями (10, 100, 1000 и т.
д.) называются разрядными единицами, так как цифра 1 — единственная значимая цифра в числе и от ее местоположения зависит количественное значение числа. Важно запомнить правила для умножения и деления на разрядную единицу:
Чтобы умножить число на разрядную единицу, достаточно к числу справа дописать столько нулей, сколько их содержит разрядная единица.Чтобы разделить число на разрядную единицу, достаточно от числа справа отбросить столько нулей, сколько их содержит разрядная единица.
Как умножать десятичные дроби в столбик
Чтобы перемножить десятичные дроби нужно сделать три шага:
Записать десятичные дроби в столбик и умножить друг на друга, как обыкновенные числа.
Посчитать количество знаков после запятой у каждой дроби. Сложить их количество.

Полученное количество знаков отсчитать справа налево и поставить запятую.
Пример: умножить 3, 11 на 0,01.
Как решаем:
Запишем дроби в столбик и умножим их, как будто у нас нет никаких запятых:
Получаем: 311 ∗ 001 = 311.
Считаем общее количество цифр после запятой у обеих дробей — в нашем примере их четыре (по две на каждую).
Берем число, которое получилось после умножения и отсчитываем справа налево 4 знака. Но у нас получилось всего три цифры, а не четыре. Значит добавляем перед ними один ноль и вуаля — четыре цифры после запятой готовы
Ответ: 3,11 ∗ 0,01 = 0,0311.
| Примеры умножения десятичных дробей столбиком: |
|---|
Как умножать десятичные дроби на натуральные числа
Умножение десятичных дробей на обычные числа происходит так же, как и умножение между десятичными дробями.
Чтобы считать быстрее, умножайте их в столбик по правилам выше. А вот и примерчики!
Пример 1. Умножить десятичную дробь 2,27 на целое число 15.
Как решаем:
умножить столбиком данные числа и отделить два знака запятой.
Ответ: 15 ∗ 2,27 = 34,05.
Пример 2. Умножить 11 на 0,005.
Как решаем:
умножить столбиком данные числа и отделить три знака запятой.
Ответ: 11 ∗ 0,005 = 0,055.
Пример 3. Умножить 0,1557.. на 3.
Как решаем:
Округлить бесконечную дробь:
0,1557..≈ 0,156
0,156 * 3 ≈ 0,468.
Ответ: 0,1557.. ∗ 3 ≈ 0,468.
Как умножать десятичные дроби на 10, 100, 1000
Чтобы умножить десятичную дробь на 10, 100, 1000, нужно просто перенести запятую в дроби вправо на столько знаков, сколько нулей стоит во втором множителе. Лишние нули слева можно отбросить. А если цифр не хватает — дописываем нули.
Примеры:
1,15 ∗ 10 = 11,5;
22,345 ∗ 100 = 2 234,5;
8,99 ∗ 1 000 = 8 990;
0,54678 ∗ 10 000 = 5467,8;
0,07 ∗ 1 000 = 70;
0,00033 ∗ 100 = 0,033.
Как умножать десятичные дроби на 0,1, 0,01, 0,001
Чтобы умножить десятичную дробь на 0,1, 0,01, 0,001, нужно перенести запятую в дроби влево на столько знаков, сколько нулей стоит перед единицей.
Ноль целых — тоже считаем. Если цифр не хватает — просто дописываем дополнительный ноль — один или несколько — после запятой.
Примеры:
34,9 ∗ 0,1 = 3,49;
1,8 ∗ 0,1 = 0,18;
145,7 ∗ 0,01 = 1,457;
9655,1 ∗ 0,001 = 9,6551;
11,9 ∗ 0,0001 = 0,00119.
Как умножить десятичную дробь на обыкновенную
Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.
Пример 1. Умножить на 0,9.
Как решаем:
Записать 0,9 в виде обыкновенной дроби:
Умножить числа по правилам
Ответ:
Пример 2.
Умножить 0,18 на .
Как решаем:
Записать в виде десятичной дроби:
Произвести умножение в столбик или при помощи калькулятора:
Ответ:
Шпаргалки для родителей по математике
Все формулы по математике под рукой
Лидия Казанцева
Автор Skysmart
К предыдущей статье
386.1K
Десятичные дроби
К следующей статье
488.3K
Решение уравнений с дробями
Получите план обучения, который поможет понять и полюбить математику
На вводном уроке с методистом
Выявим пробелы в знаниях и дадим советы по обучению
Расскажем, как проходят занятия
Подберём курс
Калькулятор длинного деления с остатком
Базовый калькулятор
Поделись этим калькулятором и страницей
Калькулятор Использование
Разделите два числа, делимое и делитель, и найдите ответ как частное с остатком.
Узнайте, как решить деление в длинное с остатками, или попрактикуйтесь в решении собственных задач на деление в длинное и используйте этот калькулятор, чтобы проверить свои ответы.
Деление в длинное с остатком — это один из двух методов деления в длинное вручную. Это несколько проще, чем решение задачи на деление путем нахождения частного ответа с десятичной дробью. Если вам нужно сделать длинное деление с десятичными знаками, используйте наш Длинное деление с калькулятором десятичных дробей.
Каковы части деления
Для предложения деления 487 ÷ 32 = 15 R 7
- 487 является дивидендом
- 32 это делитель
- 15 является частной частью ответа
- 7 — оставшаяся часть ответа
Как сделать длинное деление с остатком
Из приведенного выше примера давайте разделим 487 на 32, показывая работу.
Задайте задачу деления с помощью длинного символа деления или длинной скобки деления.
Поместите делимое число 487 внутрь скобы. Делимое — это число, которое вы делите.
Поместите 32, делитель, снаружи кронштейна. Делитель — это число, на которое вы делите.
Разделите первое число делимого, 4, на делитель, 32.
4 разделить на 32 равно 0 с остатком 4. Вы можете пока игнорировать остаток.
Поставьте 0 над скобкой деления.
Это начало частного ответа.
Далее умножьте 0 на делитель 32 и подставьте результат 0 под первым числом делимого внутри скобки.
0 * 32 = 0
Нарисуйте линию под 0 и вычтите 0 из 4.
4 – 0 = 4
Запишите следующее число делимого и вставьте его после 4, чтобы получилось 48.
Разделите 48 на делитель 32. Ответ: 1. Вы можете пока игнорировать остаток.
48 ÷ 32 = 1
Обратите внимание, что вы можете пропустить все предыдущие шаги с нулями и сразу перейти к этому шагу. Вам просто нужно понять, сколько цифр в делимом вам нужно пропустить, чтобы получить первое ненулевое значение в частном ответе. В этом случае вы можете сразу разделить 32 на 48.
Поместите 1 над разделительной чертой, справа от 0. Затем умножьте 1 на 32 и запишите ответ под 48.
1 * 32 = 32
Проведите линию и из 48 вычтите 32.
48 – 32 = 16
Сократите следующее число из делимого и вставьте его после 16, чтобы получилось 167.
Разделите 167 на 32. Видите, получается закономерность?
167 ÷ 32 равно 5 с остатком 7
Поместите 5 над разделительной чертой, справа от 1. Умножьте 5 на 32 и запишите ответ под 167.
5 * 32 = 160
Нарисуйте линию и вычтите 160 из 167.
167 – 160 = 7
Так как 7 меньше 32, ваше деление в большую сторону выполнено. У вас есть ответ: частное равно 15, а остаток равен 7.
Итак, 487 ÷ 32 = 15 с остатком 7
Для более длинных дивидендов вы должны продолжать повторять шаги деления и умножения, пока не соберете каждую цифру из делимого и не решите задачу.
Дополнительная литература
Math is Fun также предоставляет пошаговый процесс деления
Длинное деление с остатками.
Подписаться на калькуляторSoup:
Сложение, вычитание, умножение и деление матриц
Используйте этот онлайн-калькулятор для выполнения операций с матрицами (суммирование, вычитание, умножение и деление).
Как сложить две матрицы?
Обе матрицы должны иметь одинаковую размерность, то есть одинаковое количество строк и одинаковое количество столбцов.
Сложить две матрицы просто: просто добавьте соответствующие элементы и поместите сумму в ту же соответствующую позицию.
Пример:
A и B две матрицы размерности 2 x 2
`A = [[1,5], [6, -4]]`
`B = [[0, -12], [3,7]]`
Тогда мы можем просуммировать,
`A + B = [[1+0,5-12], [6+3, -4+7]] = [[1, -7 ], [9,3]]`
Как вычесть две матрицы?
Точно так же две матрицы должны иметь одинаковую размерность, то есть одинаковое количество строк и одинаковое количество столбцов.
Чтобы их вычесть, просто вычтите элементы, находящиеся в одной и той же позиции, и поместите результат в ту же соответствующую позицию.
Пример:
A и B две матрицы размерности 3 x 2
`A = [[2,6], [7, -2], [5,11]]`
`B = [[ 1, -10], [4,7], [-9,13]]`
затем,
`А – В = [[2-1,6-(-10)], [7-4, -2-7], [5- (-9) ,11-13]] = [[1,16], [3, -9], [14, -2]]`
Как перемножить две матрицы?
Для заданных двух матриц A и B умножение двух матриц A.B возможно только в том случае, если число столбцов матрицы A равно числу строк матрицы B. Таким образом, можно умножить матрицу 2 x 3 на матрицу 3 x 4. но не матрицей 2 x 2. Мы можем обобщить следующим образом:
Произведение матриц A.B определяется только для матриц со следующими размерностями:0035 Размер B n x p
Произведение двух матриц P = A.B является матрицей размера m x p.
Обратите внимание: порядок A и B в произведении имеет значение, это A.B, а не B.
A, который не определен, если p отличается от m (умножение матриц не является коммутативным).
Как рассчитать произведение матриц?
Предположим, что A — матрица 2 x 3, а B — матрица 3 x 2. В соответствии с приведенными выше определениями (m=2, n=3 и p=2) умножение возможно, и произведение матриц P = A.B имеет размерность 2 x 2
`A = [[1,5,2], [3,4,7]]`
`B = [[0, -1], [8,6], [-2,10]]`
`P = A*B = [[\цвет {красный} {1},\цвет {красный} {5},\цвет {красный} {2}], [3,4,7]] * [[ \color {красный} {0}, -1], [\color {красный} {8}, 6], [\color {красный} {-2} ,10]] = [[\color {красный} {c_11 }, c_12], [c_21, c_22]]`
– Для расчета коэффициента `c_11` мы “умножаем” 1-ю строку на 1-й столбец. Итак, мы имеем
`c_11 = [1,5,2] * [[0], [8], [-2]] = 1*0 +5*8 +2* (-2) = 36`
– Для расчета коэффициента `c_12` мы “умножаем” 1-ю строку на 2-й столбец. Итак, у нас
`c_12 = [1,5,2] * [[-1], [6], [10]] = 1* (-1) +5*6 +2* (10) = 49`
– Для расчета коэффициента `c_21` мы «умножаем» 2-ю строку на 1-й столбец.
Итак, мы имеем
`c_21 = [3,4,7] * [[0], [8], [-2]] = 3*0 +4*8 +7* (-2) = 18`
– Для расчета коэффициента `c_22` мы “умножаем” 2-ю строку на 2-й столбец. Итак, мы имеем
`c_22 = [3,4,7] * [[-1], [6], [10]] = 3* (-1) +4*6 +7* (10) = 91 `
Записываем окончательный результат,
`P = A*B = [[36,49], [18,91]]`
Мы обобщаем этот метод следующим образом:
Предположим, что A и B — две матрицы соответствующих размерностей m x n и n x p, тогда произведение P = A.B является матрицей размерности m x p. Обозначим через `c_ (ij)` элемент матрицы P, находящийся в первой строке и j-м столбце.
Коэффициент `c_ (ij)`вычисляется путем «умножения» строки i матрицы A на столбец j матрицы B.
Как разделить две матрицы?
Предположим, что A и B являются двумя матрицами, такими как: 9(-1)`
Это приводит к умножению двух матриц, как описано выше. Возьмем пример.
Пример: Как разделить А на В?
`A = [[1,2], [5,7]]`
`B = [[-1,2], [10,7]]`
Проверим условия делимости, описанные выше:
– Является ли B квадратной матрицей? да, потому что количество столбцов совпадает с количеством строк (= 2).
Это будет неполное частное.
д.
